【題目】已知函數(shù).

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)設(shè),若關(guān)于的不等式上有解,求的取值范圍.

【答案】(1)見解析;(2) .

【解析】試題分析: (1)對(duì)函數(shù)兩次求導(dǎo),判斷出函數(shù)的單調(diào)性;(2)將函數(shù)g(x)的解析式代入關(guān)于x的不等式,化簡(jiǎn)并構(gòu)造新函數(shù),對(duì)新函數(shù)求導(dǎo),討論參數(shù)的范圍判斷出單調(diào)性求出最值,代入不等式即可.

試題解析:

(1)由題意知,

,當(dāng)時(shí), 恒成立,

∴當(dāng)時(shí), ;當(dāng)時(shí), ,

∴函數(shù)上單調(diào)遞增,在上單調(diào)遞減.

2,

由題意知,存在,使得成立.

即存在,使得成立,

,

.

時(shí), ,則,∴函數(shù)上單調(diào)遞減,

成立,解得,;

②當(dāng)時(shí),令,解得;令,解得,

∴函數(shù)上單調(diào)遞增,在上單調(diào)遞減,

,,解得,無解;

③當(dāng)時(shí), ,則,∴函數(shù)上單調(diào)遞增,

,不符合題意,舍去;

綜上所述, 的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次高中學(xué)科知識(shí)競(jìng)賽中,對(duì)4000名考生的參賽成績(jī)進(jìn)行統(tǒng)計(jì),可得到如圖所示的頻率分布直方圖,其中分組的區(qū)間為,,,,60分以下視為不及格,若同一組中數(shù)據(jù)用該組區(qū)間中間值作代表值,則下列說法中正確的是(

A.成績(jī)?cè)?/span>的考生人數(shù)最多B.不及格的考生人數(shù)為1000

C.考生競(jìng)賽成績(jī)的平均分約為70D.考生競(jìng)賽成績(jī)的中位數(shù)為75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間有5名工人其中初級(jí)工2人,中級(jí)工2人,高級(jí)工1現(xiàn)從這5名工人中隨機(jī)抽取2名.

求被抽取的2名工人都是初級(jí)工的概率;

求被抽取的2名工人中沒有中級(jí)工的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是同一平面內(nèi)的三個(gè)向量,下列命題中正確的是(

A.

B.,則

C.兩個(gè)非零向量,若,則共線且反向

D.已知,且的夾角為銳角,則實(shí)數(shù)的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校高中學(xué)生五一小長(zhǎng)假參加實(shí)踐活動(dòng)的情況,抽查了100名學(xué)生,統(tǒng)計(jì)他們假期參加實(shí)踐活動(dòng)的時(shí)間,繪成的頻率分布直方圖如圖所示.

1)估計(jì)這100名學(xué)生參加實(shí)踐活動(dòng)時(shí)間的眾數(shù)、中位數(shù)和平均數(shù).

2)估計(jì)這100名學(xué)生參加實(shí)踐活動(dòng)時(shí)間的上四分位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,手機(jī)的功能逐漸強(qiáng)大,很大程度上代替了電腦、電視.為了了解某高校學(xué)生平均每天使用手機(jī)的時(shí)間是否與性別有關(guān),某調(diào)查小組隨機(jī)抽取了名男生、名女生進(jìn)行為期一周的跟蹤調(diào)查,調(diào)查結(jié)果如表所示:

平均每天使用手機(jī)超過小時(shí)

平均每天使用手機(jī)不超過小時(shí)

合計(jì)

男生

女生

合計(jì)

(1)能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為學(xué)生使用手機(jī)的時(shí)間長(zhǎng)短與性別有關(guān)?

(2)在這名女生中,調(diào)查小組發(fā)現(xiàn)共有人使用國(guó)產(chǎn)手機(jī),在這人中,平均每天使用手機(jī)不超過小時(shí)的共有人.從平均每天使用手機(jī)超過小時(shí)的女生中任意選取人,求這人中使用非國(guó)產(chǎn)手機(jī)的人數(shù)的分布列和數(shù)學(xué)期望.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,攝影愛好者在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測(cè)得立柱頂端O的仰角和立柱底部B的俯角均為,已知攝影愛好者的身高約為米(將眼睛S距地面的距離SA米處理).

(1)求攝影愛好者到立柱的水平距離AB和立柱的高度OB

(2)立柱的頂端有一長(zhǎng)為2米的彩桿MN,且MN繞其中點(diǎn)O在攝影愛好者與立柱所在的平面內(nèi)旋轉(zhuǎn).在彩桿轉(zhuǎn)動(dòng)的任意時(shí)刻,攝影愛好者觀察彩桿MN的視角(設(shè)為)是否存在最大值?若存在,請(qǐng)求出取最大值時(shí)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中, 平面, 為線段上一點(diǎn), , 的中點(diǎn).

(1)證明:

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐,兩兩垂直,是三棱錐外接球面上一動(dòng)點(diǎn),則到平面的距離的最大值是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案