【題目】如圖(1),平面五邊形中,為正三角形,,,.如圖(2)將沿折起到的位置,使得平面平面.點為線段的中點.
(1)求證:平面;
(2)若異面直線與所成角的正切值為,,求四棱錐的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性,并說明理由;
(2)設(shè),問函數(shù)的圖像是否關(guān)于某直線成軸對稱圖形,如果是,求出的值,如果不是,請說明理由;(可利用真命題:“函數(shù)的圖像關(guān)于某直線成軸對稱圖形”的充要條件為“函數(shù)是偶函數(shù)”)
(3)設(shè),函數(shù),若函數(shù)與的圖像有且只有一個公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時,求函數(shù)在上的最值;
(2)若函數(shù)在上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,其中為自然對數(shù)的底數(shù).
(Ⅰ)設(shè)(其中為的導(dǎo)函數(shù)),判斷在上的單調(diào)性;
(Ⅱ)若無零點,試確定正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域為R的奇函數(shù).
(1)求t的值;
(2)判斷在R上的單調(diào)性,并用定義證明;
(3)若函數(shù)在上的最小值為-2,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):
經(jīng)常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,
求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
從這5人中,在隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有120名工人,其年齡都在20~ 60歲之間,各年齡段人數(shù)按[20,30),[30,40),[40,50),[50,60]分成四組,其頻率分布直方圖如下圖所示.工廠為了開發(fā)新產(chǎn)品,引進(jìn)了新的生產(chǎn)設(shè)備,要求每個工人都要參加A、B兩項培訓(xùn),培訓(xùn)結(jié)束后進(jìn)行結(jié)業(yè)考試。已知各年齡段兩項培訓(xùn)結(jié)業(yè)考試成績優(yōu)秀的人數(shù)如下表所示。假設(shè)兩項培訓(xùn)是相互獨立的,結(jié)業(yè)考試也互不影響。
年齡分組 | A項培訓(xùn)成績 優(yōu)秀人數(shù) | B項培訓(xùn)成績 優(yōu)秀人數(shù) |
[20,30) | 27 | 16 |
[30,40) | 28 | 18 |
[40,50) | 16 | 9 |
[50,60] | 6 | 4 |
(1)若用分層抽樣法從全廠工人中抽取一個容量為40的樣本,求四個年齡段應(yīng)分別抽取的人數(shù);
(2)根據(jù)頻率分布直方圖,估計全廠工人的平均年齡;
(3)隨機(jī)從年齡段[20,30)和[40,50)中各抽取1人,設(shè)這兩人中A、B兩項培訓(xùn)結(jié)業(yè)考試成績都優(yōu)秀的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題,其中正確的序號是________(寫出所有正確命題的序號).
①已知集合,,則映射中滿足的映射共有個;
②函數(shù)的圖象關(guān)于對稱的函數(shù)解析式為;
③若函數(shù)的值域為,則實數(shù)的取值范圍是;
④已知函數(shù)的最大值為,最小值為,則的值等于.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com