已知|
a
|=4
,|
b
|=3
,(2
a
-3
b
)•(2
a
+
b
)=61
,則
a
b
的夾角θ為
3
3
分析:直接利用向量的數(shù)量積的定義及性質進行運算,結合向量的夾角的范圍即可求解
解答:解:∵|
a
|=4
,|
b
|=3
(2
a
-3
b
)•(2
a
+
b
)=61

4
a
2
-4
a
b
-3
b
2
=61

∴16×4-4×4×3cosθ-3×9=61
∴cosθ=-
1
2

∵0≤θ≤π
θ=
3

故答案為:
3
點評:本題主要考查了向量的基本運算及向量的數(shù)量積的簡單應用,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知|
a
|=4
,|
b
|=
3
,
a
b
=6
,求
(1)(
a
-
b
)•
b

(2)求|
a
+
b
|

(提示:|
a
|2=
a
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=4,b=2,且焦點在x軸上的橢圓標準方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中,已知a=4,∠B=45°,若解此三角形時有且只有唯一解,則b的值應滿足
b>4或b=2
2
b>4或b=2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61
,
求(1)
a
b
的夾角

(2)|
a
+
b
|的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=4,|
b
|=3,(2
a
-3
b
)•(2
a
+
b
)=61.
(1)求
a
b
的夾角為θ;
(2)求|
a
+
b
|;
(3)若
AB
=
a
,
AC
=
b
,作三角形ABC,求△ABC的面積.

查看答案和解析>>

同步練習冊答案