【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對1000位顧客進(jìn)行獎勵,規(guī)定:每位顧客從一個裝有4個標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個球,球上所標(biāo)的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的4個球中有1個所標(biāo)的面值為50元,其余3個均為10元,求:
①顧客所獲的獎勵額為60元的概率;
②顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是60000元,并規(guī)定袋中的4個球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡,請對袋中的4個球的面值給出一個合適的設(shè)計,并說明理由.
【答案】解:(1)設(shè)顧客所獲取的獎勵額為X,
①依題意,得P(X=60)==,
即顧客所獲得獎勵額為60元的概率為,
②依題意得X得所有可能取值為20,60,
P(X=60)=,P(X=20)==,
即X的分布列為
X | 60 | 20 |
P |
所以這位顧客所獲的獎勵額的數(shù)學(xué)期望為E(X)=20×+60×=40
(2)根據(jù)商場的預(yù)算,每個顧客的平均獎勵額為60元,所以先尋找期望為60元的可能方案.
對于面值由10元和50元組成的情況,如果選擇(10,10,10,50)的方案,因為60元是面值之和的最大值,所以數(shù)學(xué)期望不可能為60元,
如果選擇(50,50,50,10)的方案,因為60元是面值之和的最小值,所以數(shù)學(xué)期望也不可能為60元,
因此可能的方案是(10,10,50,50)記為方案1,
對于面值由20元和40元的組成的情況,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),記為方案2,
以下是對這兩個方案的分析:
對于方案1,即方案(10,10,50,50)設(shè)顧客所獲取的獎勵額為X1 , 則X1的分布列為
X1 | 60 | 20 | 100 |
P |
X1 的數(shù)學(xué)期望為E(X1)=20x+60x+100x=60
X1 的方差D(X1)=(20-60)2x(60-60)2x+(100-60)2x=,
對于方案2,即方案(20,20,40,40)設(shè)顧客所獲取的獎勵額為X2 , 則X2的分布列為
X2 | 40 | 60 | 80 |
P |
X2 的數(shù)學(xué)期望為E(X2)=40x+60x+80x=60,
X2 的方差D(X2)=差D(X1)(40-60)2x(60-60)2x+(80-60)2x=.
由于兩種方案的獎勵額的數(shù)學(xué)期望都符合要求,但方案2獎勵額的方差比方案1小,所以應(yīng)該選擇方案2.
【解析】(1)根據(jù)古典概型的概率計算公式計算顧客所獲的獎勵額為60元的概率,依題意得X得所有可能取值為20,60,分別求出P(X=60),P(X=20),畫出顧客所獲的獎勵額的分布列求出數(shù)學(xué)期望;
(2)先討論,尋找期望為60元的方案,找到(10,10,50,50),(20,20,40,40)兩種方案,分別求出數(shù)學(xué)期望和方差,然后做比較,問題得以解決.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池的池底水平鋪設(shè)污水凈化管道(,是直角頂點(diǎn))來處理污水,管道越長,污水凈化效果越好.設(shè)計要求管道的接口是的中點(diǎn),分別落在線段上.已知米,米,記.
(1)試將污水凈化管道的長度表示為的函數(shù),并寫出定義域;
(2)若,求此時管道的長度;
(3)當(dāng)取何值時,污水凈化效果最好?并求出此時管道的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),已知曲線在點(diǎn)處的切線與直線平行
(Ⅰ)求的值;
(Ⅱ)是否存在自然數(shù),使得方程在內(nèi)存在唯一的根?如果存在,求出;如果不存在,請說明理由。
(Ⅲ)設(shè)函數(shù)(表示中的較小者),求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),如果,使得,則稱為區(qū)間[a,b]上的“中值點(diǎn)”,下列函數(shù):
①; ②; ③; ④中,在區(qū)間[O,1]上“中值點(diǎn)”多于一個的函數(shù)序號為( )
A. ①② B. ①③ C. ②③ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1;B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤和投資單位:萬元).
(1)分別將A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)已知該企業(yè)已籌集到18萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn).
①若平均投入生產(chǎn)兩種產(chǎn)品,可獲得多少利潤?
②問:如果你是廠長,怎樣分配這18萬元投資,才能使該企業(yè)獲得最大利潤?其最大利潤約為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,既是偶函數(shù),且在區(qū)間(0,+∞)內(nèi)是單調(diào)遞增的函數(shù)是( 。
A.y=
B.y=cosx
C.y=|lnx|
D.y=2|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】復(fù)利是一種計算利息的方法.即把前一期的利息和本金加在一起算作本金,再計算下一期的利息.某同學(xué)有壓歲錢1000元,存入銀行,年利率為2.25%;若放入微信零錢通或
者支付寶的余額寶,年利率可達(dá)4.01%.如果將這1000元選擇合適方式存滿5年,可以多獲利息( )元.(參考數(shù)據(jù):)
A. 176 B. 100 C. 77 D. 88
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自點(diǎn)A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com