(12分)已知函數(shù)
(Ⅰ)當時,求函數(shù)的最小值;
(Ⅱ)若對任意,恒成立,試求實數(shù)的取值范圍.
(Ⅰ) 時,取得最小值.(Ⅱ) .

試題分析:(1)先將原式化成求解導數(shù)f‘(x),再利用導數(shù)的正負與函數(shù)單調(diào)性的關系,即可求得函數(shù)f(x)的最小值;
(2)原題等價于x2+2x+a>0對x∈[1,+∞)恒成立,再結合二次函數(shù)的單調(diào)性只須g(1)>0,從而求得實數(shù)a的取值范圍;
解(Ⅰ) 時,(因為)
所以,上單調(diào)遞增,故時,取得最小值.
(Ⅱ) 因為對任意,恒成立,即恒成立,只需恒成立,只需,因為,
所以,實數(shù)的取值范圍是.
點評:解決該試題的關鍵是是對于同一個問題的不同的處理角度,可以運用均值不等式得到最值,也可以結合導數(shù)的工具得到最值,對于恒成立問題一般都是轉(zhuǎn)換為求解函數(shù)的 最值即可得到。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的定義域是____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù),則函數(shù)的值域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則的定義域為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)的定義域為             

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

.函數(shù)的定義域為            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知定義域為R的偶函數(shù)在區(qū)間上是增函數(shù),若,則實數(shù)的取值范圍是____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)
(1)求函數(shù)的定義域;
(2)求函數(shù)的值域;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的定義域為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案