作出函數(shù)y=
|1-x2|
1+|x|
的圖象.
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將函數(shù)解析式化簡(jiǎn),去掉絕對(duì)值符號(hào),化為分段函數(shù),再作圖
解答: 解:y=
|1-x2|
1+|x|
=
x-1,x>1
-x+1,0≤x≤1
x+1,-1≤x<0
-x-1,x<-1
,圖象如圖所示
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)圖象的作法,關(guān)鍵是化為分段函數(shù),數(shù)形結(jié)合的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=-
2
2
sin(2ωx+
π
4
)+
1
2
(ω>0)的圖象與直線y=m相切,并且相鄰兩個(gè)切點(diǎn)的距離為
π
2

(1)求ω,m的值;
(2)將y=f(x)的圖象向右平移φ個(gè)單位后,所得的圖象C對(duì)應(yīng)的函數(shù)g(x)恰好是偶函數(shù),求最小正數(shù)φ,并求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0),F(xiàn)1、F2分別是它的左、右焦點(diǎn),A(-1,0)是其左頂點(diǎn),且雙曲線的離心率為e=2.設(shè)過(guò)右焦點(diǎn)F2的直線l與雙曲線C的右支交于P、Q兩點(diǎn),其中點(diǎn)P位于第一象限內(nèi).
(1)求雙曲線的方程;
(2)若直線AP、AQ分別與直線x=
1
2
交于M、N兩點(diǎn),求證:MF2⊥NF2;
(3)是否存在常數(shù)λ,使得∠PF2A=λ∠PAF2恒成立?若存在,求出λ的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為24,邊OA比OC大5.E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交x軸于D點(diǎn),過(guò)點(diǎn)D作DF⊥AE于點(diǎn)F.
(1)求OA、OC的長(zhǎng);
(2)求證:DF為⊙O′的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知200輛汽車通過(guò)某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示.
(1)時(shí)速在[60,70]的汽車大約有多少輛?
(2)若時(shí)速大于等于60為超速,則有多少車輛超速?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的一條內(nèi)角平分線CD的方程為2x+y-1=0,兩個(gè)頂點(diǎn)為A(1,2),B(-1,-1),求第三個(gè)頂點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R+且a+b=1.
(1)求a2+b2的最小值;
(2)求(
1
a2
-1)(
1
b2
-1)
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(2α+β)=3sinβ,設(shè)tanα=x,tanβ=y,記y=f(x)
(1)求f(x) 的表達(dá)式;
(2)定義正數(shù)數(shù)列{an};a1=
1
2
,an+12=2an•f(an)(n∈N*).試求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若-1≤x≤2,則函數(shù)f(x)=2+2×3x+1-9x的值域
 

查看答案和解析>>

同步練習(xí)冊(cè)答案