已知函數(shù) ,其中R.
(Ⅰ)若曲線在點處的切線方程為,求函數(shù)的解析式;
(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性.
解:(Ⅰ), ------------1分
由導(dǎo)數(shù)的幾何意義得,于是. -----------------3分
由切點在直線上可知,解得. -----5分
所以函數(shù)的解析式為. ------------6分
(Ⅱ), ------------------7分
當(dāng)時,,函數(shù)在區(qū)間及上為增函數(shù);
在區(qū)間上為減函數(shù); --------------------------------------------------------9分
當(dāng)時,,函數(shù)在區(qū)間上為增函數(shù);------------------10分
當(dāng)時,,函數(shù)在區(qū)間及上為增函數(shù);
在區(qū)間上為減函數(shù). --------------------------12分
命題意圖:本題考查了導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間的方法以及分類討論的數(shù)學(xué)思想。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分) 已知函數(shù) ,其中R.
(Ⅰ)若曲線在點處的切線方程為,求函數(shù)的解析式;
(Ⅱ)當(dāng)時,討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省東莞市高三模擬(一)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),,其中R.
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時,若,,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),,其中R.
(Ⅰ)當(dāng)a=1時判斷的單調(diào)性;
(Ⅱ)若在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),當(dāng)時,若,,總有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省衡陽市高三上學(xué)期第一次月考理科數(shù)學(xué) 題型:解答題
(本小題滿分13分
已知函數(shù),,其中R
(Ⅰ)討論的單調(diào)性
(Ⅱ)若在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍
(Ⅲ)設(shè)函數(shù), 當(dāng)時,若,,總有成立,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東濟(jì)寧鄒城二中高三上學(xué)期期中文科數(shù)學(xué)試卷 題型:解答題
已知函數(shù),,其中R.
(Ⅰ)當(dāng)a=1時判斷的單調(diào)性;
(Ⅱ)若在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),當(dāng)時,若,,總有成立,求實數(shù)的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com