(1)求y=
cosx
2cosx+1
值域
(2)求y=
1+sinx
3+cosx
的值域.
考點(diǎn):函數(shù)的值域
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì),不等式的解法及應(yīng)用
分析:(1)解出cosx,借助余弦函數(shù)的有界性解不等式即可得到值域;
(2)把函數(shù)y=
1+sinx
3+cosx
化成整式,化成asinx+bcosx的形式,借助三角函數(shù)的有界性求解.
解答: 解:(1)由y=
cosx
2cosx+1
可得,cosx=
y
1-2y

由于-1≤cosx≤1,即為|
y
1-2y
|≤1,
(1-y)(3y-1)
(1-2y)2
≤0,
解得y≥1或y≤
1
3
,
則值域?yàn)椋?∞,
1
3
]∪[1,+∞);
(2)∵y=
1+sinx
3+cosx
,
∴3y+ycosx=1+sinx,
即sinx-ycosx=3y-1,
1+y2
sin(x+θ)=3y-1,
∴sin(x+θ)=
3y-1
1+y2

又-1≤sin(x+θ)≤1,
∴-1≤
3y-1
1+y2
≤1,
解得0≤y≤
3
4
,
即函數(shù)y=
1+sinx
3+cosx
的值域是[0,
3
4
].
點(diǎn)評(píng):本題考查三角函數(shù)的最值,考查輔助角公式與正弦函數(shù)的有界性,考查轉(zhuǎn)化與方程思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線2x2-y2=1的離心率為( 。
A、
6
2
B、
3
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x>3”的一個(gè)必要不充分條件是( 。
A、x>4B、x<4
C、x>2D、x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
2
2
(sin20°+cos20°),b=2cos210°-1,c=cos225°-sin225,則( 。
A、c<a<b
B、b<c<a
C、a<b<c
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若lg2=a,lg3=b,則log920的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1,側(cè)棱AA1⊥平面ABC,A1B1=A1C1=2,AA1=1,∠B1A1C1=120°,D是BC的中點(diǎn),P是AD的中點(diǎn),點(diǎn)Q在A1B上且BQ=3QA1
(1)求證:PQ∥平面AA1C1C;
(2)求平面AA1B與平面A1BD夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0),左右頂點(diǎn)分別為A,B,過B做傾斜角為60°的直線交雙曲線右支于P點(diǎn),且∠APB=30°,則雙曲線的離心率為( 。
A、
2
B、
3
C、
5
+1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是一個(gè)等差數(shù)列,a1=19,a26=-1,設(shè)An=an+an+1+…+an+n(n∈N*),求|An|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-2x 
1
2
,求f(x)的定義域,并證明f(x)的定義域內(nèi),當(dāng)x1<x2時(shí),f(x1)>f(x2).

查看答案和解析>>

同步練習(xí)冊(cè)答案