某項(xiàng)考試按科目A、科目B依次進(jìn)行,只有當(dāng)科目A成績合格時(shí),才可繼續(xù)參加科目B的考試已知每個(gè)科目只允許有一次補(bǔ)考機(jī)會(huì),兩個(gè)科目成績均合格方可獲得證書.現(xiàn)某人參加這項(xiàng)考試,科目A每次考試成績合格的概率均為,科目B每次考試成績合格的概率均為.假設(shè)各次考試成績合格與否均互不影響.
(Ⅰ)求他不需要補(bǔ)考就可獲得證書的概率;
(Ⅱ)在這項(xiàng)考試過程中,假設(shè)他不放棄所有的考試機(jī)會(huì),記他參加考試的次數(shù)為,求的數(shù)學(xué)期望E.
解:設(shè)“科目A第一次考試合格”為事件A,“科目A補(bǔ)考合格”為事件A2;“科目B第一次考試合格”為事件B,“科目B補(bǔ)考合格”為事件B.
(Ⅰ)不需要補(bǔ)考就獲得證書的事件為A1·B1,注意到A1B1相互獨(dú)立,
.
答:該考生不需要補(bǔ)考就獲得證書的概率為.            ………6分
(Ⅱ)由已知得,=2,3,4,注意到各事件之間的獨(dú)立性與互斥性,可得….7分
            ……8分
      ……9分
    ……10分
          ……….12分

2
3
4
P



      
答:該考生參加考試次數(shù)的數(shù)學(xué)期望為.  ……..15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的漸近線與圓相切,則等于(   )
A.B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過點(diǎn)作圓的兩條切線,切點(diǎn)分別為A,B,已知,若,則的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓過O(0,0)、A(1,0)、B(0,-1)三點(diǎn),則圓的方程是(   )
A.x2+y2+x-y="0" B.x2+y2-x+y="0"
C.x2+y2+x+y="0"D.x2+y2-x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓x2+y2-4x-4y-10=0上的點(diǎn)到直線x+y-14=0的最大距離與最小距離的差是(  )
A.36 B.18  C.  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定圓,動(dòng)圓過點(diǎn)且與圓相切,記動(dòng)圓圓
的軌跡為
(Ⅰ)求曲線的方程;
(Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),證明直線與曲線恒有且只有一個(gè)公共點(diǎn).
(Ⅲ)由(Ⅱ)你能否得到一個(gè)更一般的結(jié)論?并且對(duì)雙曲線寫出一個(gè)類似的結(jié)論(皆不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓過點(diǎn),且圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)求圓過點(diǎn)的最短弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C過點(diǎn)(1,0),且圓心在x軸的正半軸上,直線l:被該圓所截得的弦長為,則圓C的標(biāo)準(zhǔn)方程為                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)已知圓(x-1)2+(y-1)2=1和點(diǎn)A(2a,0),B(0,2b)且a>1, b>1.
(1)若圓與直線AB相切,求a和b之間的關(guān)系式;
(2)若圓與直線AB相切且△AOB面積最小,求直線AB的方程.(O為坐標(biāo)原點(diǎn))

查看答案和解析>>

同步練習(xí)冊(cè)答案