正方體ABCD-A1B1C1D1的棱長為1,E、G分別是BC、C1D1的中點(diǎn)
(1)求證:EG平面BDD1B1
(2)求E到平面BDD1B1的距離.
(1)取BD的中點(diǎn)F,連結(jié)EF,D1F,
∵E為BC的中點(diǎn),
∴EF為三角形BCD的中位線,
則EFDC,且EF=
1
2
CD,
∵G為C1D1的中點(diǎn),
∴D1GCD,且D1G=
1
2
CD,
∴EFD1C,且EF=D1G,
∴四邊形EFD1G為平行四邊形,
∴D1FEG,而D1F?平面BB1D1D,EG?平面BB1D1D,
∴EG平面BB1D1D.
(2)∵EG平面BDD1B1,則G到平面BDD1B1的距離,即為E到平面BDD1B1的距離.
∴過G作GN⊥B1D1于N,則GN⊥面BDD1B1
∵G是C1D1的中點(diǎn),
∴D1G=
1
2
,
又sin45°=
GN
D1G
=
2
2
,
∴GN=
2
2
×
1
2
=
2
4

即E到平面BDD1B1的距離為
2
4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,60°的二面角的棱上有A,B兩點(diǎn),直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),且都垂直于AB,已知AB=4,AC=6,BD=8,則CD的長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三棱錐D-ABC及其三視圖中的主視圖和左視圖如圖所示,則棱BD的長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點(diǎn),
求證:
(1)PC平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,Q是棱PA上的動點(diǎn).
(Ⅰ)若Q是PA的中點(diǎn),求證:PC平面BDQ;
(Ⅱ)若PB=PD,求證:BD⊥CQ;
(Ⅲ)在(Ⅱ)的條件下,若PA=PC,PB=3,∠ABC=60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正三棱柱ABC-A1B1C1中,BC=BB1,點(diǎn)D是BC的中點(diǎn).
(I)求證:A1C1平面AB1C;
(Ⅱ)求證:△AB1D為直角三角形;
(Ⅲ)若三棱錐B1-ACD的體積為
3
3
,求棱BB1的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD為直角梯形,PA⊥底面ABCD其中AB⊥AD,CD⊥AD,CD=AD=PA=2AB,E是PC中點(diǎn).
(1)求證:BE平面PAD;
(2)求異面直線PD與BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖甲,在等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,F(xiàn)是BC上的點(diǎn),AF與DE交于點(diǎn)G,將△ABF沿AF折起,得到如圖乙所示的三棱錐A-BCF,證明:DE平面BCF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=1,PA⊥平面ABCD,E是PC的中點(diǎn),F(xiàn)是AB的中點(diǎn).
(1)求證:BE平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求二面角P-BC-A的大小.

查看答案和解析>>

同步練習(xí)冊答案