已知定義在(-∞,+∞)上的函數(shù)f(x)是奇函數(shù),且當(dāng)x∈(-∞,0)時(shí),f (x)=-xlg(2-x),則當(dāng)x≥0時(shí),f(x)的解析式是
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:運(yùn)用奇函數(shù)的定義,令x>0,則-x<0,再由已知區(qū)間上的解析式,即可得到所求的解析式.
解答: 解:由于定義在(-∞,+∞)上的函數(shù)f(x)是奇函數(shù),
則f(-x)=-f(x),
令x>0,則-x<0,
當(dāng)x∈(-∞,0)時(shí),f (x)=-xlg(2-x),
則f(-x)=xlg(2+x),
即有-f(x)=xlg(2+x),
則f(x)=-xlg(2+x).
當(dāng)x=0時(shí),f(0)=0,上式也適合.
則當(dāng)x≥0時(shí),f(x)的解析式為:f(x)=-xlg(2+x).
故答案為:f(x)=-xlg(2+x).
點(diǎn)評:本題函數(shù)的奇偶性的運(yùn)用:求解析式,注意運(yùn)用定義,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為( 。
A、63.6萬元
B、67.7萬元
C、65.5萬元
D、72.0萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=-x+1,則關(guān)于x的方程f(x)=(
1
10
x,在x∈[1,3]上解的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2 x2+x≤(
1
4
x-2,求函數(shù)y=2x+2-x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-1)+g(1)=2,f(1)+g(-1)=4,則g(1)=( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(3,2),
b
=(-1,2),
c
=(4,1),當(dāng)k為何值時(shí),(
a
+k
c
)∥(2
b
-
a
)平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的首項(xiàng)a1=16,公差d=-
3
4
,當(dāng)|an|最小時(shí)的n值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|log2x<0},集合B={x|(
1
2
x≤1},則A∩B=( 。
A、{x|0<x<1}
B、{x|0≤x<1}
C、∅
D、{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y2=ax與關(guān)于(1,1)對稱的曲線有兩個(gè)不同的交點(diǎn)A、B,如果過這兩個(gè)交點(diǎn)的直線傾斜角是45°,則實(shí)數(shù)a的值是
 

查看答案和解析>>

同步練習(xí)冊答案