已知數(shù)列{an}是正項(xiàng)等比數(shù)列,{bn}是等差數(shù)列,且a6=b7,則一定有


  1. A.
    a3+a9≤b4+b10
  2. B.
    a3+a9≥b4+b10
  3. C.
    a3+a9>b4+b10
  4. D.
    a3+a9<b4+b10
B
分析:先根據(jù)等比數(shù)列、等差數(shù)列的通項(xiàng)公式表示出a6、b7,然后表示出a3+a9和b4+b10,然后二者作差比較即可.
解答:∵an=a1q(n-1),bn=b1+(n-1)d,
∵a6=b7∴a1q5=b1+6d
a3+a9=a1q2+a1q8
b4+b10=2(b1+6d)=2b7=2a6
a3+a9-2a6=a1q2+a1q8-2a1q5=a1q8-a1q5-(a1q5-a1q2)=a1q2(q3-1)2≥0
所以a3+a9大于等于b4+b10
故選B.
點(diǎn)評(píng):本題主要考查了等比數(shù)列的性質(zhì).屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項(xiàng)等差數(shù)列,給出下列判斷:
①a2+a8=a4+a6;②a4•a6≥a2•a8;③a52≤a4•a6;④a2+a8≥2
a4a6
.其中有可能正確的是( 。
A、①④B、①②④
C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項(xiàng)等比數(shù)列,公比q≠1,若lga2是lga1和1+lga4的等差中項(xiàng),且a1a2a3=1.
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)cn=
1n(3-lgan)
(n∈N*)
,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a1=32,a4=4,則數(shù)列{log2an}的前n項(xiàng)和Sn的最大值為
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南寧模擬)已知數(shù)列{an}是正項(xiàng)等比數(shù)列,若a2=2,2a3+a4=16則數(shù)列{an}的通項(xiàng)公式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•桂林模擬)已知數(shù)列{an}是正項(xiàng)數(shù)列,其首項(xiàng)a1=3,前n項(xiàng)和為Sn,4Sn=
a
2
n
+2an+4(n≥2)

(1)求數(shù)列{an}的第二項(xiàng)a2及通項(xiàng)公式;
(2)設(shè)bn=
1
Sn
,記數(shù)列{bn}的前n項(xiàng)和為Kn,求證:Kn
17
21

查看答案和解析>>

同步練習(xí)冊(cè)答案