若橢圓的一個焦點與短軸的兩個頂點可構(gòu)成一個等邊三角形,則橢圓的離心率為(  )
A.
1
4
B.
1
2
C.
2
2
D.
3
2
不妨設(shè)橢圓的中心在坐標原點,焦點在x軸,左焦點為F1,短軸的兩個頂點分別為B與B′,

∵△BF1B′為等邊三角形,|OF1|=c,|OB|=b,|BF1|=
|OF1|2+|OB|2
=
c2+b2
=a,
又b=
1
2
a,
∴c=
3
2
a,
∴該橢圓離心率e=
c
a
=
3
2

故選:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦點在x軸上,長軸長為12,離心率為
1
3
,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
4
+
y2
3
=1
,左焦點為F,右頂點為C,過F作直線l與橢圓交于A,B兩點,求△ABC面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓C的短軸長為6,離心率為
4
5
,則橢圓C的焦點F到長軸的一個端點的距離為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F1、F2是橢圓
x2
16
+
y2
25
=1
的兩個焦點,過F1的直線與橢圓交于M、N兩點,則△MNF2的周長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點為F1,左焦點為F2,若橢圓上存在一點P,滿足線段PF1相切于以橢圓的短軸為直徑的圓,切點為線段PF1的中點,則該橢圓的離心率為(  )
A.
5
3
B.
2
3
C.
2
2
D.
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
25
+
y2
16
=1
的準線方程是( 。
A.x=±
25
3
B.y=±
25
3
C.x=±
25
4
D.y=±
25
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若AB是過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中心的一條弦,M是橢圓上任意一點,且AM,BM與坐標軸不平行,kAM,kBM分別表示直線AM,BM的斜率,則kAM•kBM=( 。
A.-
c2
a2
B.-
b2
a2
C.-
c2
b2
D.-
a2
b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知經(jīng)過橢圓4x2+8y2=1右焦點F2的直線與橢圓有兩個交點A,B,F(xiàn)1是橢圓的左焦點,則△F1AB的周長為______.

查看答案和解析>>

同步練習(xí)冊答案