在邊長為a的正方形ABCD內(nèi)任取一點P,則P到點A的距離大于a的概率是
 
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:本題考查的知識點是幾何概型,我們要根據(jù)已知條件,求出滿足條件的正方形ABCD的面積,及動點P到定點A的距離|PA|>a對應(yīng)平面區(qū)域的面積,代入幾何概型計算公式,即可求出答案.
解答: 解:滿足條件的正方形ABCD,如下圖示:
其中滿足動點P到定點A的距離|PA|>a的平面區(qū)域如圖中陰影以外所示:
則正方形的面積S正方形=a2
陰影部分的面積S陰影=
πa2
4

故動點P到定點A的距離|PA|>a的概率P=1-
π
4

故答案為:1-
π
4
點評:幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于圓周率π,數(shù)學(xué)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗,受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計π的值:先請l20名同學(xué),每人隨機寫下一個都小于l的正實數(shù)對(x,y); 再統(tǒng)計兩數(shù)能與l 構(gòu)成鈍角三角形三邊的數(shù)對(x,y) 的個數(shù)m; 最后再根據(jù)統(tǒng)計數(shù)m來估計π的值.假如統(tǒng)計結(jié)果是m=94,那么可以估計π≈
 
(用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖AC是圓O的直徑,B、D是圓O上兩點,AC=2BC=2CD=2,PA⊥圓O所在的平面,PA=
3
,點M在線段BP上,且BM=
1
3
BP.
(1)求證:CM∥平面PAD;
(2)求異面直線BP與CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+ϕ) (ω>0,|ϕ|<
π
2
)有一個零點x0=-
2
3
,且其圖象過點A(
7
3
,1),記函數(shù)f(x)的最小正周期為T,
(1)若f′(x0)<0,試求T的最大值及T取最大值時相應(yīng)的函數(shù)解析式、
(2)若將所有滿足題條件的ω值按從小到大的順序排列,構(gòu)成數(shù)列{ωn},試求數(shù)列{ωn}的前項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

任取實數(shù)a,b∈[-1,1],則a,b滿足b≥a2的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x+1)+2的零點所在區(qū)間是(  )
A、(-
1
2
,
7
8
B、(
7
8
,1)
C、(-1,
1
2
D、(1,
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-1,3),
b
=(1,t),若(
a
-2
b
)⊥
a
,則|
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在漸近線方程為4x±3y=0的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)上,其中F1,F(xiàn)2分別為其左、右焦點.若△PF1F2的面積為16且
PF1
PF2
=0,則a+b的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式an=2n(n+1),證明:
1
a1-1
+
1
a2-1
+…+
1
an-1
2
3
(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案