已知雙曲線的離心率,它的一條漸近線與拋物線的準線交點的縱坐標為 ,則正數(shù)的值為      .

 

【答案】

【解析】

試題分析:根據(jù)題意,由于雙曲線的離心率,且其一條漸近線 與拋物線的準線交點的縱坐標為 ,可知橫坐標為-2,則可知準線方程為x=-2,則p=4,故答案為4.

考點:雙曲線的幾何性質

點評:解決的關鍵是熟練的掌握圓錐曲線的幾何性質,屬于基礎題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為( 。
A、
x2
4
-
y2
12
=1
B、
x2
12
-
y2
4
=1
C、
x2
10
-
y2
6
=1
D、
x2
6
-
y2
10
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率等于2,且與橢圓
x2
25
+
y2
9
=1有相同的焦點,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率等于2,且與橢圓
x2
25
+
y2
9
=1
有相同的焦點,
(1)求橢圓的離心率;   
(2)求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,F(xiàn)1、F2是左右焦點,P為雙曲線上一點,且∠F1PF2=60°,S△PF1F2=12
3
.該雙曲線的標準方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為
x2
4
-
y2
12
=1
x2
4
-
y2
12
=1

查看答案和解析>>

同步練習冊答案