【題目】共享單車進(jìn)駐城市,綠色出行引領(lǐng)時(shí)尚,某市有統(tǒng)計(jì)數(shù)據(jù)顯示,2016年該市共享單車用戶年齡等級(jí)分布如圖1所示,一周內(nèi)市民使用單車的頻率分布扇形圖如圖2所示,若將共享單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”,使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知在“經(jīng)常使用單車用戶”中有 是“年輕人”.
(Ⅰ)現(xiàn)對(duì)該市市民進(jìn)行“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查,采用隨機(jī)抽樣的方法,抽取一個(gè)容量為200的樣本,請(qǐng)你根據(jù)圖表中的數(shù)據(jù),補(bǔ)全下列2×2列聯(lián)表,并根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),判斷能有多大把握可以認(rèn)為經(jīng)常使用共享單車與年齡有關(guān)?
使用共享單車情況與年齡列聯(lián)表

年輕人

非年輕人

合計(jì)

經(jīng)常使用共享單車用戶

120

不常使用共享單車用戶

80

合計(jì)

160

40

200

(Ⅱ)將頻率視為概率,若從該市市民中隨機(jī)任取3人,設(shè)其中經(jīng)常使用共享單車的“非年輕人”人數(shù)為隨機(jī)變量X,求X的分布列與期望.
(參考數(shù)據(jù):

P(K2≥k0

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

其中,K2= ,n=a+b+c+d)

【答案】解:(Ⅰ)

100|20|60|20于是a=100,b=20,c=60,d=20,

∴K2= ≈2.083>2.072,

即有85%的把握可以認(rèn)為經(jīng)常使用共享單車與年齡有關(guān).

(Ⅱ)由(Ⅰ)的列聯(lián)表可知,經(jīng)常使用共享單車的“非年輕人”占樣本總數(shù)的頻率為 =10%,

即在抽取的用戶中出現(xiàn)經(jīng)常使用單車的“非年輕人”的概率為0.1,

∵X~B(3,0.1),X=0,1,2,3,

∴P(X=0)=(1﹣0.1)3=0.729,

P(X=1)=

P(X=2)= ,

P(X=3)=0.13=0.001,

∴X的分布列為:

X

0

1

2

3

P

0.729

0.243

0.027

0.001

∴X的數(shù)學(xué)期望E(X)=0×0.729+1×0.243+2×0.027+3×0.001=0.3


【解析】解:(Ⅰ)補(bǔ)全的列聯(lián)表如下:

年輕人

非年輕人

合計(jì)

經(jīng)常使用共享單車

100

20

120

不常使用共享單車

60

20

80

合計(jì)

160

40

200


【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知幾何體ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,F(xiàn)C∥EA,AB=AD=EA=1,CD=CF=2.
(Ⅰ)求證:平面EBD⊥平面BCF;
(Ⅱ)求點(diǎn)B到平面ECD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1= ,若bn=log2an﹣2,則b1b2…bn的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列 滿足:① ;②所有項(xiàng) ;③
設(shè)集合 ,將集合 中的元素的最大值記為 .換句話說(shuō),
數(shù)列 中滿足不等式 的所有項(xiàng)的項(xiàng)數(shù)的最大值.我們稱數(shù)列 為數(shù)列
伴隨數(shù)列.例如,數(shù)列1,3,5的伴隨數(shù)列為1,1,2,2,3.
(1)若數(shù)列 的伴隨數(shù)列為1,1,1,2,2,2,3,請(qǐng)寫(xiě)出數(shù)列 ;
(2)設(shè) ,求數(shù)列 的伴隨數(shù)列 的前100之和;
(3)若數(shù)列 的前 項(xiàng)和 (其中 常數(shù)),試求數(shù)列 的伴隨數(shù)列 項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中學(xué)校共有學(xué)生1800名,各年級(jí)男女學(xué)生人數(shù)如表.已知在全校學(xué)生中隨機(jī)抽取1名,抽到高二女生的概率是0.16.

高一年級(jí)

高二年級(jí)

高三年級(jí)

女生

324

x

280

男生

316

312

y

現(xiàn)用分層抽樣的方法,在全校抽取45名學(xué)生,則應(yīng)在高三抽取的學(xué)生人數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S3=9,a2a4=21,數(shù)列{bn}滿足 ,若 ,則n的最小值為(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的通項(xiàng)公式為an=2n﹣1(n∈N*),且a2 , a5分別是等比數(shù)列{bn}的第二項(xiàng)和第三項(xiàng),設(shè)數(shù)列{cn}滿足cn= ,{cn}的前n項(xiàng)和為Sn
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)是否存在m∈N* , 使得Sm=2017,并說(shuō)明理由
(3)求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣x2與g(x)=(x﹣2)2 ﹣m的圖象上存在關(guān)于(1,0)對(duì)稱的點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.(﹣∞,1﹣ln2)
B.(﹣∞,1﹣ln2]
C.(1﹣ln2,+∞)
D.[1﹣ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)﹣f′(x)是奇函數(shù).
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案