【題目】已知函數(shù), 為常數(shù)),函數(shù)為自然對數(shù)的底).

(1)討論函數(shù)的極值點的個數(shù);

(2)若不等式恒成立,求實數(shù)的取值范圍.

【答案】(1)詳見解析(2)

【解析】試題分析:(1)求得 ,分三種情況討論,分別研究函數(shù)的單調(diào)性進而可得函數(shù)極值點的個數(shù);(2)不等式恒成立,等價于只需研究函數(shù)的最小值不小于零即可.

試題解析:(1)

得: ,記,則,

,且時, , 時, ,

所以當時, 取得最大值,又,

(i)當時, 恒成立,函數(shù)無極值點;

(ii)當時, 有兩個解, ,且時, 時, , 時, ,所以函數(shù)有兩個極值點;

(iii)當時,方程有一個解,且, 時, ,所以函數(shù)有一個極值點;

(2)記 ,

,

, ,

又當, 時, ,

, 在區(qū)間上單調(diào)遞增,

所以恒成立,即恒成立,

綜上實數(shù)的取值范圍是.

【方法點晴】本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題是利用方法 ③ 求得的范圍的.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,點是橢圓上的點,離心率為.

(1)求橢圓的方程;

(2)點在橢圓上上,若點與點關(guān)于原點的對稱,連接,并延長與橢圓的另一個交點為,連接,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列{an}中,已知a1=2,a4=16
(1)求數(shù)列{an}的通項公式;
(2)若a3 , a5分別為等差數(shù)列{bn}的第3項和第5項,試求數(shù)列{bn}的通項公式及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, , .

(1)討論函數(shù)的單調(diào)性;

(2)記,設(shè), 為函數(shù)圖象上的兩點,且.

(i)當時,若 處的切線相互垂直,求證: ;

(ii)若在點 處的切線重合,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有四個小球,分別寫有”“”“”“四個字,有放回地從中任取一個小球,取到就停止,用隨機模擬的方法估計直到第二次停止的概率:先由計算器產(chǎn)生14之間取整數(shù)值的隨機數(shù),且用1,2,3,4表示取出小球上分別寫有”“”“”“四個字,以每兩個隨機數(shù)為一組,代表兩次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):

13 24 12 32 43 14 24 32 31 21

23 13 32 21 24 42 13 32 21 34

據(jù)此估計,直到第二次就停止的概率為(  )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.

(1)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;

(2)現(xiàn)袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 (a>0,b>0)的右準線l2與一條漸近線l交于點P,F是雙曲線的右焦點.

(1)求證:PFl

(2)PF3,且雙曲線的離心率e,求該雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)某種水杯,每個水杯的原材料費、加工費分別為30元、m(m為常數(shù),且2m3),設(shè)每個水杯的出廠價為x(35x41),根據(jù)市場調(diào)查,水杯的日銷售量與ex(e為自然對數(shù)的底數(shù))成反比例,已知每個水杯的出廠價為40元時,日銷售量為10個.

(1)求該工廠的日利潤y()與每個水杯的出廠價x()的函數(shù)關(guān)系式;

(2)當每個水杯的出廠價為多少元時,該工廠的日利潤最大,并求日利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2 100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為________________元.

查看答案和解析>>

同步練習冊答案