點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),則點(diǎn)p到直線y=x-2的最小距離為(  )
A、
2
2
B、
2
C、2
2
D、2
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:由題意知,當(dāng)曲線上過點(diǎn)P的切線和直線y=x-2平行時(shí),點(diǎn)P到直線y=x-2的距離最。蟪銮對(duì)應(yīng)的函數(shù)的導(dǎo)數(shù),令導(dǎo)數(shù)值等于1,可得且點(diǎn)的坐標(biāo),此切點(diǎn)到直線y=x-2的距離即為所求.
解答: 解:點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),
當(dāng)過點(diǎn)P的切線和直線y=x-2平行時(shí),點(diǎn)P到直線y=x-2的距離最小.
直線y=x-2的斜率等于1,
令y=x2-lnx的導(dǎo)數(shù) y′=2x-
1
x
=1,x=1,或 x=-
1
2
(舍去),
故曲線y=x2-lnx上和直線y=x-2平行的切線經(jīng)過的切點(diǎn)坐標(biāo)(1,1),
點(diǎn)(1,1)到直線y=x-2的距離等于
2
,
故點(diǎn)P到直線y=x-2的最小距離為
2
,
故選:B.
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式的應(yīng)用,函數(shù)的導(dǎo)數(shù)的求法及導(dǎo)數(shù)的意義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a2+a9+a13=66,則a8=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將連續(xù)整數(shù)1,2,…,25填入如圖所示的5行5列的表格中,使每一行的數(shù)字從左到右都成遞增數(shù)列,則第三列各數(shù)之和的最小值為
 
,最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=-1+
3
i,則|z|=( 。
A、2
B、3
C、4
D、
3
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程ay=b2x2+c中的a,b,c∈{-2,-1,0,1,2,3,4},且a,b,c互不相同.在所有這些方程所表示的曲線中,不同的拋物線共有(  )
A、150條B、104條
C、100條D、62條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程|2x-1|=a有兩個(gè)不等實(shí)根,則實(shí)數(shù)a的取值范圍是(  )
A、(-∞,0)
B、(1,2)
C、(0,+∞)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
2
=1的一個(gè)焦點(diǎn)為(2,0),則橢圓的方程是( 。
A、
x2
4
+
y2
2
=1
B、
x2
3
+
y2
2
=1
C、x2+
y2
2
=1
D、
x2
6
+
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,⊙O內(nèi)切于△ABC,切點(diǎn)分別為D,E,F(xiàn).已知∠B=50°,∠C=60°,連結(jié)OE,OF,DE,DF,那么∠EDF等于(  )
A、40°B、55°
C、65°D、70°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a-2i=b+ai,其中a、b∈R,i是虛數(shù)單位,則a+b=(  )
A、-4B、4C、0D、數(shù)值不定

查看答案和解析>>

同步練習(xí)冊(cè)答案