【題目】寫出下列命題的否定,并判斷真假:
(1)不論取何實數(shù),方程必有實數(shù)根;
(2)所有末位數(shù)字是0或5的整數(shù)都能被5整除;
(3)某些梯形的對角線互相平分;
(4)被8整除的數(shù)能被4整除.
【答案】(1)存在實數(shù),使得方程沒有實數(shù)根,真命題;(2)存在末位數(shù)字是0或5的整數(shù)不能被5整除,是假命題;(3)任一個梯形的對角線都不互相平分,是真命題;(4)存在一個數(shù)能被8整除,但不能被4整除,是假命題.
【解析】
(1) 先將命題改寫成含全稱量詞的形式得到全稱命題,再將全稱命題寫成特稱命題即可,利用判別式小于零有解說明命題是真命題.
(2) 先將命題改寫成含全稱量詞的形式得到全稱命題,再將全稱命題寫成特稱命題即可,顯然是假命題.
(3)先將命題改寫成含特稱量詞的形式得到特稱命題,再將特稱命題寫成全稱命題即可,是真命題.
(4)先將命題改寫成含全稱量詞的形式得到全稱命題,再將全稱命題寫成特稱命題即可,是假命題.
(1)這一命題可以表述為對所有的實數(shù),方程都有實數(shù)根,其否定是存在實數(shù),使得方程沒有實數(shù)根.當(dāng),即時,該方程沒有實根,因此是真命題.
(2)命題的否定:存在末位數(shù)字是0或5的整數(shù)不能被5整除,是假命題.
(3)命題的否定:任一個梯形的對角線都不互相平分,是真命題.
(4)命題的否定:存在一個數(shù)能被8整除,但不能被4整除,是假命題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線經(jīng)過點,其傾斜角為,以原點為極點,以軸為非負半軸為極軸,與坐標系取相同的長度單位,建立極坐標系.設(shè)曲線的極坐標方程為.
(1)若直線與曲線有公共點,求傾斜角的取值范圍;
(2)設(shè)為曲線上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)函數(shù)的圖象能否與軸相切?若能,求出實數(shù),若不能,請說明理由;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鐵人中學(xué)高二學(xué)年某學(xué)生對其親屬30人飲食習(xí)慣進行了一次調(diào)查,并用如圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)
(Ⅰ)根據(jù)莖葉圖,幫助這位學(xué)生說明其親屬30人的飲食習(xí)慣;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表:
主食蔬菜 | 主食肉類 | 合計 | |
50歲以下人數(shù) | |||
50歲以上人數(shù) | |||
合計人數(shù) |
(Ⅲ)能否在犯錯誤的概率不超過0.01的前提下認為其親屬的飲食習(xí)慣與年齡有關(guān)系?
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖的的值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由.
(3)估計居民月用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,,.
(1)用函數(shù)單調(diào)性的定義在在證明:函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增;
(2)若對任意滿足的實數(shù),都有成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖形中,每個三角形上各有一個數(shù)字,若六個三角形上的數(shù)字之和為,則稱該圖形是“和諧圖形”.已知其中四個三角形上的數(shù)字之和為,現(xiàn)從、、、、中任取兩個數(shù)字標在另外兩個三角形上,則恰好使該圖形為“和諧圖形”的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線的左、右焦點分別為. 若點P在雙曲線上,且為銳角三角形,則|PF1|+|PF2|的取值范圍是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com