若f(x)=1-2a-2acosx-2sin2x的最小值為f(a).

(1)寫(xiě)出f(a)的表達(dá)式;

(2)確定能使f(a)=的a值,并對(duì)此時(shí)的a求出f(x)的最大值.

答案:
解析:

  (1)f(a)=

  (1)f(a)=

  (2)當(dāng)cosx=1時(shí),f(x)max=5.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書(shū)) 題型:044

函數(shù)f(x)=-sin2x+sinx+a,若1≤f(x)≤,對(duì)一切x∈R恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:044

函數(shù)f(x)的定義域?yàn)镈,如果存在x0∈D,使f(x0)=x0,則稱點(diǎn)(x0,x0)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).

(1)試證明:若定義在R上的奇函數(shù)f(x)的圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè).

(2)若函數(shù)f(x)=的圖象上有兩個(gè)關(guān)于直線x+y=3對(duì)稱的不動(dòng)點(diǎn),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2004全國(guó)各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

函數(shù)f(x)=的定義域?yàn)镽,且f(-n)=0(n∈N).

(1)求證:a>0,b<0;

(2)(文)若f(1)=且f(0)=,求證:f(1)+f(2)+…+f(n)>n+(n∈N).

(理)若f(1)=,且f(x)在[0,1]上的最小值為,求證:f(1)+f(2)+…+f(n)>n+(n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題十七 選修系列 題型:解答題

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分。如果多做,則按所做的前兩題記分。作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣M=,N=,且MN=。
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程。
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線L的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為=2sin。
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線L交于點(diǎn)A,B。若點(diǎn)P的坐標(biāo)為(3,),求∣PA∣+∣PB∣。
(3)(本小題滿分7分)選修4-5:不等式選講
已知函數(shù)f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集為,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案