已知函數(shù)f(x)=
a
x
+xlnx,g(x)=x3-x2-3.
(1)討論函數(shù)h(x)=
f(x)
x
的單調(diào)性;
(2)如果對(duì)任意的s,t∈[
1
2
,2],都有f(s)≥g(t)成立,求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù),即可討論函數(shù)h(x)=
f(x)
x
的單調(diào)性;
(2)求出g(x)max=g(2)=1,當(dāng)x∈[
1
2
,2]時(shí),f(x)=
a
x
+xlnx恒成立,等價(jià)于a≥x-x2lnx恒成立,然后利用導(dǎo)數(shù)求函數(shù)u(x)=x-x2lnx在區(qū)間[
1
2
,2]上取得最大值,則實(shí)數(shù)a的取值范圍可求.
解答: 解:(1)h(x)=
f(x)
x
=
a
x2
+lnx,h′(x)=
x2-2a
x3
,
①a≤0,h′(x)≥0,函數(shù)h(x)在(0,+∞)上單調(diào)遞增
②a>0時(shí),h'(x)>0,則x∈(
2a
,+∞),函數(shù)h(x)的單調(diào)遞增區(qū)間為(
2a
,+∞),
h'(x)<0,則x∈(0,
2a
),函數(shù)h(x)的單調(diào)遞減區(qū)間為(0,
2a
),.
(2)g(x)=x3-x2-3,g′(x)=3x(x-
2
3
),
x
1
2
(
1
2
2
3
)
2
3
(
2
3
,2)
2
g′(x)0-0+
g(x)-3遞減極小值遞增1
由上表可知,g(x)在x=2處取得最大值,即g(x)max=g(2)=1
所以當(dāng)x∈[
1
2
,2]時(shí),f(x)=
a
x
+xlnx≥1恒成立,等價(jià)于a≥x-x2lnx恒成立,
記u(x)=x-x2lnx,所以a≥u(x)max,u′(x)=1-x-2xlnx,可知u′(1)=0,
當(dāng)x∈(
1
2
,1)時(shí),1-x>0,2xlnx<0,則u′(x)>0,∴u(x)在x∈(
1
2
,2)上單調(diào)遞增;
當(dāng)x∈(1,2)時(shí),1-x<0,2xlnx>0,則u′(x)<0,∴u(x)在(1,2)上單調(diào)遞減;
故當(dāng)x=1時(shí),函數(shù)u(x)在區(qū)間[
1
2
,2],上取得最大值u(1)=1,
所以a≥1,故實(shí)數(shù)a的取值范圍是[1,+∞).
點(diǎn)評(píng):本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查了導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,考查了數(shù)學(xué)轉(zhuǎn)化思想方法和函數(shù)構(gòu)造法,訓(xùn)練了利用分離變量法求參數(shù)的取值范圍,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角三角形ABC,A、B、C的對(duì)邊分別為a、b、c,
b
a
+
a
b
=6cosC,則
tanC
tanA
+
tanC
tanB
=( 。
A、4B、3C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=xf′(x)的圖象如圖所示,下面四個(gè)圖象中y=f(x)的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan2α=
4
3
,α∈(-
π
2
,0),則
cos2α
cos(
π
4
+α)sin(
π
4
-α)
的值為( 。
A、-
2
3
B、
2
3
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中國(guó)共產(chǎn)黨第十八屆中央委員會(huì)第二次全體會(huì)議于2013年2月26日至28日在北京順利舉行,兩名大學(xué)生志愿者甲與乙被安排在26日下午參加接待工作,工作時(shí)間均在13時(shí)至18時(shí)之間,已知甲連續(xù)工作2小時(shí),乙連續(xù)工作3小時(shí),則17時(shí)甲、乙都在工作的概率是( 。
A、
1
6
B、
1
2
C、
1
3
D、
1
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+lnx.求函數(shù)f(x)在[1,e]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-2(a+2)lnx+ax
,a∈R
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的最小值;
(2)是否存在實(shí)數(shù)a,對(duì)任意x1,x2∈(0,+∞),且x1≠x2,都有
f(x2)-f(x1)
x2-x1
>a
恒成立,若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
3x+a
x-2
,(a為常數(shù),且a∈R)
(1)若a=1,求f(x)在區(qū)間[-3,-2]上的最大值和最小值
(2)若f(x)在(2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)的最小值為1,f(0)=f(2)=3,g(x)=f(x)-ax (a∈R).
(1)求f(x)的解析式;
(2)若g(x)在[-1,1]上的最小值為1,求實(shí)數(shù)a的值;
(3)若在區(qū)間[-1,1]上,y=g(x)的圖象恒在y=2x+7的圖象下方,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案