已知拋物線頂點在原點,焦點在x軸上,此拋物線上一點到準(zhǔn)線的距離為6,則    

 

【答案】

【解析】

試題分析:不妨設(shè),由x+ =4得p=4,所以,從而,

考點:本題主要考查拋物線的定義、標(biāo)準(zhǔn)方程及幾何性質(zhì)。

點評:基本題型,圓錐曲線焦半徑公式要記住。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線頂點在原點,焦點在y軸上,拋物線上一點A到焦點F的距離為5,A點縱坐標(biāo)為-3,求點A橫坐標(biāo)及拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線頂點在原點,焦點是圓x2+y2-4x+3=0的圓心F,如圖.
(1)求拋物線的方程;
(2)是否存在過圓心F的直線l與拋物線、圓順次交于A、B、C、D,且使得
.
AB 
  
.
,2
.
BC 
  
.
,
.
CD 
  
.
成等差數(shù)列,若直線l存在,求出它的方程;若直線l不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線頂點在原點,焦點在X軸上,又知此拋物線上一點A(m,-3)到焦點F的距離為5,求正數(shù)m的值,并寫出此拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線頂點在原點,焦點為雙曲線
x2
13
-
y2
12
=1
的右焦點,則此拋物線的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求滿足下列條件的曲線標(biāo)準(zhǔn)方程
(1)已知橢圓的焦點坐標(biāo)分別為(0,-4),(0,4),且a=5
(2)已知拋物線頂點在原點,焦點為(3,0)

查看答案和解析>>

同步練習(xí)冊答案