【題目】某度假酒店為了解會員對酒店的滿意度,從中抽取50名會員進行調(diào)查,把會員對酒店的“住宿滿意度”與“餐飲滿意度”都分別五個評分標準:1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意),其統(tǒng)計結果如下表(住宿滿意度為x,餐飲滿意度為y).

餐飲滿意度y

人數(shù)

住宿滿意度x

1

2

3

4

5

1

1

1

2

1

0

2

2

1

3

2

1

3

1

2

5

3

4

4

0

3

5

4

3

5

0

0

1

2

3

1)求“住宿滿意度”分數(shù)的平均數(shù);

2)求“住宿滿意度”為3分時的5個“餐飲滿意度”人數(shù)的方差;

3)為提高對酒店的滿意度,現(xiàn)從的會員中隨機抽取2人征求意見,求至少有1人的“住宿滿意度”為2的概率.

【答案】1.(2.(3

【解析】

1)由表格數(shù)據(jù)計算出“住宿滿意度”分數(shù),進而可求平均數(shù).

2)“住宿滿意度”為3分時的5個“餐飲滿意度”人數(shù)的平均數(shù),利用方程公式即可求解.

3)符合條件的所有會員共6人,其中“住宿滿意度”為23人分別記為a,b,c“住宿滿意度”為33人分別記為d,e,f,從這6人中抽取2人,列舉出基本事件個數(shù),利用古典概型的概率計算公式即可求解.

1

2)當“住宿滿意度”為3分時的5個“餐飲滿意度”人數(shù)的平均數(shù)為,

其方差為

3)符合條件的所有會員共6人,其中“住宿滿意度”為23人分別記為a,bc,“住宿滿意度”為33人分別記為d,ef

從這6人中抽取2人有如下情況,,,,,,,,,,,,.共15種情況.

所以至少有1人的“住宿滿意度”為2的概率

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,,,底面,,點在棱上,且

(1)證明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求的最大值;

2)如果函數(shù)在公共定義域D上,滿足,那么就稱伴隨函數(shù)”.已知函數(shù),.若在區(qū)間上,函數(shù)伴隨函數(shù),求實數(shù)的取值范圍;

3)若,正實數(shù)滿足,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓與拋物線在第一象限的交點為,橢圓的左、右焦點分別為,其中也是拋物線的焦點,且.

1)求橢圓的方程;

2)過的直線(不與軸重合)交橢圓兩點,點為橢圓的左頂點,直線分別交直線于點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),;

若函數(shù)上存在零點,求a的取值范圍;

設函數(shù),,當時,若對任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 在四棱錐中, 底面, ,, ,點為棱的中點.

1)證明:

2)求直線與平面所成角的正弦值;

3)若為棱上一點, 滿足, 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一年度未發(fā)生有責任道路交通事故

下浮10%

上兩年度未發(fā)生有責任道路交通事故

下浮

上三年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任不涉及死亡的道路交通事故

上浮10%

上一個年度發(fā)生有責任交通死亡事故

上浮30%

某機構為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,,記為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學期望;(數(shù)學期望值保留到個位數(shù)字)

2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設三角形的邊長為不相等的整數(shù),且最大邊長為n,這些三角形的個數(shù)為an.

1)求數(shù)列{an}的通項公式;

2)在12,100中任取三個不同的整數(shù),求它們可以是一個三角形的三條邊長的概率.

附:1+22+32+…+n21+23+33+…+n3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),gx)=x21

1)求fx)在點(0f0))處的切線方程.

2)若hx)=fx+gx)有兩個極值點x1,x2x1x2),求證:x1fx1)>x2fx2).

查看答案和解析>>

同步練習冊答案