已知函數(shù)f(x)=x3-ax-1.
(1)若a=3時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在實(shí)數(shù)集R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使f(x)在(-1,1)上單調(diào)遞減?若存在,求出a的取值范圍;若不存在,說明理由.
(1)f(x)的單調(diào)增區(qū)間為(-∞,-1)∪(1,+∞),單調(diào)減區(qū)間為(-1,1)(2)a≤0.(3)存在實(shí)數(shù)a使f(x)在(-1,1)上單調(diào)遞減,且a≥3.
(1)當(dāng)a=3時(shí),f(x)=x3-3x-1,∴f′(x)=3x2-3,
令f′(x)>0即3x2-3>0,解得x>1或x<-1,
∴f(x)的單調(diào)增區(qū)間為(-∞,-1)∪(1,+∞),
同理可求f(x)的單調(diào)減區(qū)間為(-1,1).
(2)f′(x)=3x2-a.
∵f(x)在實(shí)數(shù)集R上單調(diào)遞增,
∴f′(x)≥0恒成立,即3x2-a≥0恒成立,∴a≤(3x2)min.
∵3x2的最小值為0,∴a≤0.
(3)假設(shè)存在實(shí)數(shù)a使f(x)在(-1,1)上單調(diào)遞減,
∴f′(x)≤0在(-1,1)上恒成立,即a≥3x2.
又3x2∈[0,3),∴a≥3.
∴存在實(shí)數(shù)a使f(x)在(-1,1)上單調(diào)遞減,且a≥3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),,.
(1)若,求的單調(diào)遞增區(qū)間;
(2)若曲線軸相切于異于原點(diǎn)的一點(diǎn),且的極小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),,其中是常數(shù),且
(1)求函數(shù)的極值;
(2)證明:對(duì)任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對(duì)任意正數(shù)都有:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)內(nèi)有定義,對(duì)于給定的正數(shù),定義函數(shù),取函數(shù),恒有,則(   )
A.的最大值為B.的最小值為C.的最大值為2D.的最小值為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),函數(shù)
(1)若,求函數(shù)在區(qū)間上的最大值;
(2)若,寫出函數(shù)的單調(diào)區(qū)間(不必證明);
(3)若存在,使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)則方程恰有兩個(gè)不同的實(shí)根時(shí),實(shí)數(shù)a的取值范圍是(注:e為自然對(duì)數(shù)的底數(shù))(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列結(jié)論:①(cos x)′=sin x;②′=cos;③若y,則y′|x=3
=-;④(e3)′=e3.其中正確的個(gè)數(shù)為 (  ).
A.0個(gè)B.1個(gè)
C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=,其中a為正實(shí)數(shù).
(1)當(dāng)a=時(shí),求f(x)的極值點(diǎn).
(2)若f(x)為[,]上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=mxm-n的導(dǎo)數(shù)為f′(x)=8x3,則mn=    

查看答案和解析>>

同步練習(xí)冊(cè)答案