已知
為直線,
為平面,給出下列命題:
①
②
③
④
其中的正確命題序號(hào)是( )9
由題意根據(jù)線面平行的判定定理、線面垂直的性質(zhì)定理和面面平行及垂直的定理判斷線面關(guān)系是否正確.
解答:解:對(duì)于①,有可能出現(xiàn)直線n在平面α內(nèi),所以推不出n∥α,①錯(cuò);
對(duì)于②,垂直于同一個(gè)平面的兩直線是平行的,②正確;
對(duì)于③,垂直于同一直線的兩平面平行,③正確;
對(duì)于④,由α∥β,n⊥β得n⊥α,又m?α,則n⊥m,④錯(cuò).
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
如圖,矩形
所在的平面與平面
垂直,且
,
,
,
分別為
的中點(diǎn).
(Ⅰ) 求證:直線
與平面
平行;
(Ⅱ)若點(diǎn)
在直線
上,且二面角
的大小為
,試確定點(diǎn)
的位置.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在三棱錐P-ABC內(nèi),已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中點(diǎn).
(1)求直線PE與AC所成角的余弦值;
(2)求直線PB與平面ABC所成的角的正弦值;
(3)求點(diǎn)C到平
面PAB的距
離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐
P-
ABC中,
PA⊥底面
ABC,
PA=
AB,∠
ABC=60°,∠
BCA=90°,點(diǎn)
D、
E分別在棱
PB、
PC上,且
DE∥
BC.
(1)求證:
BC⊥平面
PAC;
(2)當(dāng)
D為
PB的中點(diǎn)時(shí),求
AD與平面
PAC所成的角的正弦值;
(3)是否存在點(diǎn)
E使得二面角
A-
DE-
P為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,三棱錐S-ABC 中,SC丄底面ABC,
,SC=AC=BC=
,M為SB中點(diǎn),N在AB上,滿足MN 丄 BC.
(I)求點(diǎn)N到平面SBC的距離;
(II)求二面角C-MN-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖4,
是半徑為
的半
圓,
為直徑,點(diǎn)
為
的中點(diǎn),點(diǎn)
和點(diǎn)
為線段
的三等分點(diǎn),平面
外一點(diǎn)
滿足
平面
,
=
.
(1)證明:
;
(2)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
地球北緯45°圈上有兩點(diǎn)A、B,點(diǎn)A在東經(jīng)130°處,點(diǎn)B在西經(jīng)140°處,若地球半徑為R,則A、B兩點(diǎn)在緯度圈上的劣弧長與A、B兩點(diǎn)的球面距離之比是 .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
12分)
如圖所示,四棱錐P—ABCD的底面ABCD是正方形,PD
底面ABCD,PD=AD
(Ⅰ)求證:平面PAC
平面PBD
(Ⅱ)求PC與平面PBD所成角
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
球O的半徑為1,該球的一小圓O
1上兩點(diǎn)A、B的球面距離為
,則
=( )
A.
B.
C.
D.
查看答案和解析>>