已知||=8,||=5,則||的取值范圍是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:高中數(shù)學(xué)全解題庫(kù)(國(guó)標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

在△ABC中,

(1)已知b=8,c=3,A=60°,求a;

(2)已知a=20,b=29,c=21,求B;

(3)已知a=,c=2,B=150°,求b;

(4)已知a=2,b=,c=,求A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=8,∠B=60°,∠C=75°,則b等于            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=cos(2x+)+sinx·cosx

⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問(wèn)中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問(wèn)中,∵xÎ[0, ],∴2x-Î[-,],

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,

當(dāng)2x-, 即x=時(shí),f(x)max=1

第三問(wèn)中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構(gòu)造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,        ……………………8分

當(dāng)2x-, 即x=時(shí),f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考試題數(shù)學(xué)理(浙江卷)解析版 題型:解答題

 如圖,在三棱錐P-ABC中,AB=AC,D為BC的中點(diǎn),PO⊥平面ABC,垂足O落在線(xiàn)段AD上,已知BC=8,PO=4,AO=3,OD=2

(Ⅰ)證明:AP⊥BC;

(Ⅱ)在線(xiàn)段AP上是否存在點(diǎn)M,使得二面角A-MC-B為直二面角?若存在,求出AM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由。

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知sina=,aÎ(,p),cosb=-,b是第三象限的角.

⑴ 求cos(a-b)的值;

⑵ 求sin(a+b)的值;

⑶ 求tan2a的值.

【解析】第一問(wèn)中∵ aÎ(,p),∴ cosa=-=-,  ∵ b是第三象限的角,

∴ sinb=-=-,     

cos(a-b)=cosa·cosb+sina·sinb =(-)×(-)+×(-)=- 

⑵ 中sin(a+b)=sina·cosb+cosa·sinb       =×(-)+(-)×(-)= ⑶ 利用二倍角的正切公式得到!遲ana==- ∴tan2a= ==- 

解∵ aÎ(,p),∴ cosa=-=-,         …………1分

∵ b是第三象限的角,∴ sinb=-=-,        ………2分

⑴ cos(a-b)=cosa·cosb+sina·sinb          …………3分

=(-)×(-)+×(-)=-          ………………5分

⑵ sin(a+b)=sina·cosb+cosa·sinb          ……………………6分

×(-)+(-)×(-)=           …………………8分

⑶ ∵tana==-             …………………9分

∴tan2a=             ………………10分

=-

 

查看答案和解析>>

同步練習(xí)冊(cè)答案