已知集合A既是分式不等式
1
x-3
<1的解集,又是一元二次不等式x2+ax+b>0的解集.
(1)求集合A;
(2)求實數(shù)a,b的值.
考點:其他不等式的解法,一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:(1)解分式不等式求得A.
(2)根據(jù)A利用韋達定理求得實數(shù)a,b的值.
解答: 解:(1)
1
x-3
<1⇒
1
x-3
-1<0⇒
4-x
x-3
<0⇒(4-x)(x-3)<0⇒x<3
或x>4,
所以集合A=(-∞,3)∪(4,+∞).
(2)根據(jù)集合A為一元二次不等式x2+ax+b>0的解集,則方程x2+ax+b=0的根即為x1=3,x2=4,
由韋達定理知
x1+x2=-a
x1x2=b
a=-7
b=12
點評:本題主要考查分式不等式、一元二次不等式的解法,韋達定理的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知x∈(0,
1
4
),則y=x
1-4x
的最大值為( 。
A、
1
6
B、
1
4
C、
3
18
D、
3
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF
.
2CE,G是線段BF上一點,AB=AF=BC=2.
(Ⅰ)當GB=GF時,求證:EG∥平面ABC;
(Ⅱ)求二面角E-BF-A的余弦值;
(Ⅲ)是否存在點G滿足BF⊥平面AEG?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a≠0),若方程f(x)=x無實根,求證:方程f(f(x))=x也無實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x=2是函數(shù)f(x)=aln(1+x)+0.5x2-4x的一個極值點.
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若直線y=b與函數(shù)f(x)的圖象有3個不同的交點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某班一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如圖(陰影部分為損壞數(shù)據(jù)).據(jù)此解答如下問題:
(Ⅰ)求本次測試成績的中位數(shù),并求頻率分布直方圖中[80,90)的矩形的高(用小數(shù)表示);
(Ⅱ)若要從分數(shù)在[80,100]之間的試卷中任取兩份分析學生失分情況,在抽取的試卷中,求至少有一份分數(shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
AE
AC
=
AF
AD
=λ(0<λ<1).
(Ⅰ)求證:不論λ為何值,總有平面BEF⊥平面ABC;
(Ⅱ)若λ=
1
2
,求四棱錐B-CDFE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosα,-1),
b
=(2,1+sinα),且
a
b
=-1
(1)求tanα的值      
(2)求tan(α+
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)y=f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)若存在實數(shù)m,使得f(m)=2,求m的值;
(2)如果f(x)<f(2-x)+2,求x的集合.

查看答案和解析>>

同步練習冊答案