解:(1)因?yàn)閍
1=1,又因?yàn)閍
n+a
n+1+(-1)
n+1a
n•a
n+1=0.a(chǎn)
n≠0,
且
所以
是以
為首項(xiàng).-1為公差的等差數(shù)列.
.
所以
.
(2)因?yàn)閗∈N
* 時(shí)
,
,
所以
=
<1
即
≤a
1+a
2+…+a
2k<a
1+a
2+…+a
2k+1<1
所以當(dāng)n>1時(shí),
≤a
1+a
2+…+a
n<1.
(3)因?yàn)閎
n=|a
1a
2…a
n|=
,所以f
n(x)=1+
x+
x
2+…+
x
2n,
①當(dāng)n=1時(shí),函數(shù)f
1(x)=1+x+
=
,所以函數(shù)無(wú)零點(diǎn),結(jié)論成立.
②假設(shè)n=k時(shí)結(jié)論成立,即f
k(x)=1+
x+
x
2+…+
x
2k無(wú)零點(diǎn).
因?yàn)閤≥0時(shí),f
k(x)>0.而f
k(x)的圖象是連續(xù)不斷的曲線,所以對(duì)任意x∈Rf
k(x)>0恒成立.
當(dāng)n=k+1時(shí),因?yàn)閒
k+1(x)=1+
x+
x
2+…+
x
2k+2,
f′
k+1(x)=1+
x+
x
2+…+
x
2k+1,
g
k(x)=1+
x+
x
2+…+
x
2k+1,
∴g′
k(x)=1+
x+
x
2+…+
x
2k=f
k(x)>0,
即g
k(x)是增函數(shù),
注意到x<-(2k+1)時(shí)
t=1,2,3,…2k+1,
所以g
k(x)=1+
x+
x
2+…+
x
2k+1
=(1+x)+
+
+…+
<0
當(dāng)x≥0時(shí),g
k(x)>0而g
k(x)是增函數(shù),所以g
k(x)有且只有一個(gè)零點(diǎn),記此零點(diǎn)為x
0且x
0≠0,
則當(dāng)x∈(-∞,x
0)時(shí)
g
k(x)<g
k(x
0)=0,即f′
k+1(x)<0,當(dāng)x∈(x
0,+∞)時(shí)
g
k(x)>g
k(x
0)=0,即f′
k+1(x)>0,f
k+1(x)在x∈(-∞,x
0)單調(diào)遞減,在x∈(x
0,+∞)單調(diào)遞增,
所以對(duì)任意的x∈R,f
k+1(x)>f
k+1(x
0)=g
k(x
0)+
=
>0,從而f
k+1(x)無(wú)零點(diǎn),
即當(dāng)n=k+1時(shí),結(jié)論成立.
根據(jù)①②,可知對(duì)任意的n∈N
*,函數(shù)f
n(x)無(wú)零點(diǎn).
分析:(1)通過(guò)a
n+a
n+1+(-1)
n+1a
n•a
n+1=0,移項(xiàng)后兩邊同除(-1)
n+1a
n•a
n+1,構(gòu)造新數(shù)列,然后求數(shù)列{a
n}的通項(xiàng)公式;
(2)利用
,
,構(gòu)造數(shù)列
,通過(guò)數(shù)列求和,推出當(dāng)n>1時(shí),
≤a
1+a
2+…+a
n<1;
(3)通過(guò)b
n=|a
1a
2…a
n|求出b
n表達(dá)式,化簡(jiǎn)函數(shù)f
n(x)=1+b
1x+b
2x
2+…+b
nx
2n,n∈N
*,利用數(shù)學(xué)歸納法證明對(duì)任意的n∈N
*,函數(shù)f
n(x)無(wú)零點(diǎn).證明n=k+1時(shí),構(gòu)造函數(shù)g(x)通過(guò)圓的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,利用函數(shù)與方程的根說(shuō)明方程沒(méi)有零點(diǎn).
點(diǎn)評(píng):本題難度比較大,不僅考查數(shù)列的通項(xiàng)公式的求法,裂項(xiàng)法證明不等式,數(shù)學(xué)歸納法的應(yīng)用,函數(shù)的零點(diǎn)的判斷方法,導(dǎo)數(shù)的應(yīng)用,考查計(jì)算能力,轉(zhuǎn)化思想等思想方法.