【題目】下列函數(shù)中,既是偶函數(shù)又存在零點(diǎn)的是( )
A.y=lnx
B.
C.y=sinx
D.y=cosx

【答案】D
【解析】選項(xiàng)A:y=lnx的定義域?yàn)?/span>故y=lnx不具備奇偶性,故A錯(cuò)誤;選項(xiàng)B:是偶函數(shù),但=0無(wú)解,即不存在零點(diǎn),故B錯(cuò)誤;選項(xiàng)C:y=sinx是奇函數(shù),故C錯(cuò);選項(xiàng)D:y=cosx是偶函數(shù),且故D項(xiàng)正確。
【考點(diǎn)精析】掌握函數(shù)的奇偶性和函數(shù)的零點(diǎn)與方程根的關(guān)系是解答本題的根本,需要知道偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·四川)已知函數(shù)f(x)=2x , g(x)=x2+ax(其中aR).對(duì)于不相等的實(shí)數(shù)x1, x2 , 設(shè)m=,n=.
現(xiàn)有如下命題:
(1)對(duì)于任意不相等的實(shí)數(shù)x1, x2 , 都有m>0;
(2)對(duì)于任意的a及任意不相等的實(shí)數(shù)x1, x2 , ,都有n>0;
(3)對(duì)于任意的a , 存在不相等的實(shí)數(shù)x1, x2 , 使得m=n;
(4)對(duì)于任意的a , 存在不相等的實(shí)數(shù)x1, x2 , 使得m=-n.
其中的真命題有 (寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓(a>b>0)過(guò)點(diǎn)(0,),且離心率為。

(Ⅰ)求橢圓E的方程;
(II)設(shè)直線x my 1,(m R)交橢圓E與A,B兩點(diǎn),判斷點(diǎn)G(-,0)與以線段AB為直徑的圓的位置關(guān)系,并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·湖北)某廠用鮮牛奶在某臺(tái)設(shè)備上生產(chǎn)兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設(shè)備1小時(shí),獲利1000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設(shè)備1.5小時(shí),獲利1200元.要求每天B產(chǎn)品的產(chǎn)量不超過(guò)A產(chǎn)品產(chǎn)量的2倍,設(shè)備每天生產(chǎn)兩種產(chǎn)品時(shí)間之和不超過(guò)12小時(shí). 假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個(gè)隨機(jī)變量,其分布列為

(Ⅰ)求Z的分布列和均值;該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個(gè)隨機(jī)變量.
(Ⅱ) 若每天可獲取的鮮牛奶數(shù)量相互獨(dú)立,求3天中至少有1天的最大獲利超過(guò)10000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)對(duì)定義域內(nèi)的每一個(gè)值在其定義域內(nèi)都存在唯一的使成立,則稱(chēng)該函數(shù)為“依賴(lài)函數(shù)”.

(1)判斷函數(shù)是否為“依賴(lài)函數(shù)”,并說(shuō)明理由;

(2)若函數(shù)在定義域上為“依賴(lài)函數(shù)”,求實(shí)數(shù)乘積的取值范圍;

(3)已知函數(shù)在定義域上為“依賴(lài)函數(shù)”,若存在實(shí)數(shù)使得對(duì)任意的有不等式都成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),下列命題:時(shí),為奇函數(shù);的圖象關(guān)于中心對(duì)稱(chēng);時(shí),方程只有一個(gè)實(shí)根;方程至多有兩個(gè)實(shí)根,其中正確的個(gè)數(shù)有  

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),.
(1)(I)求的單調(diào)區(qū)間和極值;
(2)(II)證明:若存在零點(diǎn),則的區(qū)間(1,]上僅有一個(gè)零點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

(2015·重慶)如題(20)圖,三棱錐中,平面平面,,點(diǎn)D、E在線段上,且,點(diǎn)在線段上,且


(1)證明:平面.
(2)若四棱錐P-DFBC的體積為7,求線段BC的長(zhǎng)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一個(gè)人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒(méi)猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是 ,乙每輪猜對(duì)的概率是 ;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(1)“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率;
(2)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

同步練習(xí)冊(cè)答案