【題目】已知函數(shù)

1)當(dāng)時,求曲線y=fx)在點(1,f1))處的切線與兩坐標軸圍成的三角形的面積;

2)若fx≥1,求a的取值范圍.

【答案】12

【解析】

1)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,根據(jù)點斜式得切線方程,求出與坐標軸交點坐標,最后根據(jù)三角形面積公式得結(jié)果;

2)解法一:利用導(dǎo)數(shù)研究,得到函數(shù)得導(dǎo)函數(shù)的單調(diào)遞增,當(dāng)a=1時由,符合題意;當(dāng)a>1時,可證,從而存在零點,使得,得到,利用零點的條件,結(jié)合指數(shù)對數(shù)的運算化簡后,利用基本不等式可以證得恒成立;當(dāng)時,研究.即可得到不符合題意.綜合可得a的取值范圍.

解法二:利用指數(shù)對數(shù)的運算可將,

,上述不等式等價于,注意到的單調(diào)性,進一步等價轉(zhuǎn)化為,令,利用導(dǎo)數(shù)求得,進而根據(jù)不等式恒成立的意義得到關(guān)于a的對數(shù)不等式,解得a的取值范圍.

1,.

,∴切點坐標為(1,1+e),

∴函數(shù)f(x)在點(1,f(1)處的切線方程為,,

切線與坐標軸交點坐標分別為,

∴所求三角形面積為;

2)解法一:,

,且.

設(shè),

∴g(x)在上單調(diào)遞增,即上單調(diào)遞增,

當(dāng)時,,,成立.

當(dāng)時, ,,

∴存在唯一,使得,且當(dāng),當(dāng),,

因此

>1,

恒成立;

當(dāng)時, 不是恒成立.

綜上所述,實數(shù)a的取值范圍是[1,+).

解法二:等價于

,

,上述不等式等價于,

顯然為單調(diào)增函數(shù),∴又等價于,即,

,

h’(x)>0,h(x)單調(diào)遞增;在(1,+)h’(x)<0,h(x)單調(diào)遞減,

,

,a的取值范圍是[1,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,,.

1)求證:平面平面;

2)若點是線段上靠近的三等分點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知0m2,動點M到兩定點F1(﹣m,0),F2m,0)的距離之和為4,設(shè)點M的軌跡為曲線C,若曲線C過點.

1)求m的值以及曲線C的方程;

2)過定點且斜率不為零的直線l與曲線C交于A,B兩點.證明:以AB為直徑的圓過曲線C的右頂點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】政府工作報告指出,2019年我國深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進一步提升;2020年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學(xué)研一體化創(chuàng)新機制,某企業(yè)為了提升行業(yè)核心競爭力,逐漸加大了科技投入;該企業(yè)連續(xù)5年來的科技投入x(百萬元)與收益y(百萬元)的數(shù)據(jù)統(tǒng)計如下:

科技投入x

1

2

3

4

5

收益y

40

50

60

70

90

1)請根據(jù)表中數(shù)據(jù),建立y關(guān)于x的線性回歸方程;

2)按照(1)中模型,已知科技投入8百萬元時收益為140百萬元,求殘差(殘差真實值-預(yù)報值).

參考數(shù)據(jù):回歸直線方程,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】基本再生數(shù)R0與世代間隔T是新冠肺炎的流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:)的變化規(guī)律,指數(shù)增長率rR0,T近似滿足R0 =1+rT.有學(xué)者基于已有數(shù)據(jù)估計出R0=3.28T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69)

A.1.2B.1.8

C.2.5D.3.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①;②;③,這三個條件中任選一個,補充在下面問題中,然后解答補充完整的題目.

在△中,內(nèi)角A,BC所對的邊分別為.且滿足_________.

1)求;

2)已知,△的外接圓半徑為,求△的邊AB上的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,為矩形,為等腰梯形,,,,且,平面平面,分別為,的中點.

(Ⅰ)求證:平面;

(Ⅱ)若,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

若函數(shù)的最大值為3,求實數(shù)的值;

若當(dāng)時,恒成立,求實數(shù)的取值范圍;

是函數(shù)的兩個零點,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長為1的正方體中,為棱上的動點(點不與點,重合),過點作平面分別與棱,交于,兩點,若,則下列說法正確的是(

A.

B.存在點,使得∥平面

C.存在點,使得點到平面的距離為

D.用過,,三點的平面去截正方體,得到的截面一定是梯形

查看答案和解析>>

同步練習(xí)冊答案