【題目】已知函數(shù).
(1)當(dāng)時,求曲線y=f(x)在點(1,f(1))處的切線與兩坐標軸圍成的三角形的面積;
(2)若f(x)≥1,求a的取值范圍.
【答案】(1)(2)
【解析】
(1)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,根據(jù)點斜式得切線方程,求出與坐標軸交點坐標,最后根據(jù)三角形面積公式得結(jié)果;
(2)解法一:利用導(dǎo)數(shù)研究,得到函數(shù)得導(dǎo)函數(shù)的單調(diào)遞增,當(dāng)a=1時由得,符合題意;當(dāng)a>1時,可證,從而存在零點,使得,得到,利用零點的條件,結(jié)合指數(shù)對數(shù)的運算化簡后,利用基本不等式可以證得恒成立;當(dāng)時,研究.即可得到不符合題意.綜合可得a的取值范圍.
解法二:利用指數(shù)對數(shù)的運算可將,
令,上述不等式等價于,注意到的單調(diào)性,進一步等價轉(zhuǎn)化為,令,利用導(dǎo)數(shù)求得,進而根據(jù)不等式恒成立的意義得到關(guān)于a的對數(shù)不等式,解得a的取值范圍.
(1),,.
,∴切點坐標為(1,1+e),
∴函數(shù)f(x)在點(1,f(1)處的切線方程為,即,
切線與坐標軸交點坐標分別為,
∴所求三角形面積為;
(2)解法一:,
,且.
設(shè),則
∴g(x)在上單調(diào)遞增,即在上單調(diào)遞增,
當(dāng)時,,∴,∴成立.
當(dāng)時, ,,,
∴存在唯一,使得,且當(dāng)時,當(dāng)時,,,
因此
>1,
∴∴恒成立;
當(dāng)時, ∴不是恒成立.
綜上所述,實數(shù)a的取值范圍是[1,+∞).
解法二:等價于
,
令,上述不等式等價于,
顯然為單調(diào)增函數(shù),∴又等價于,即,
令,則
在上h’(x)>0,h(x)單調(diào)遞增;在(1,+∞)上h’(x)<0,h(x)單調(diào)遞減,
∴,
,∴a的取值范圍是[1,+∞).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知0<m<2,動點M到兩定點F1(﹣m,0),F2(m,0)的距離之和為4,設(shè)點M的軌跡為曲線C,若曲線C過點.
(1)求m的值以及曲線C的方程;
(2)過定點且斜率不為零的直線l與曲線C交于A,B兩點.證明:以AB為直徑的圓過曲線C的右頂點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】政府工作報告指出,2019年我國深入實施創(chuàng)新驅(qū)動發(fā)展戰(zhàn)略,創(chuàng)新能力和效率進一步提升;2020年要提升科技支撐能力,健全以企業(yè)為主體的產(chǎn)學(xué)研一體化創(chuàng)新機制,某企業(yè)為了提升行業(yè)核心競爭力,逐漸加大了科技投入;該企業(yè)連續(xù)5年來的科技投入x(百萬元)與收益y(百萬元)的數(shù)據(jù)統(tǒng)計如下:
科技投入x | 1 | 2 | 3 | 4 | 5 |
收益y | 40 | 50 | 60 | 70 | 90 |
(1)請根據(jù)表中數(shù)據(jù),建立y關(guān)于x的線性回歸方程;
(2)按照(1)中模型,已知科技投入8百萬元時收益為140百萬元,求殘差(殘差真實值-預(yù)報值).
參考數(shù)據(jù):回歸直線方程,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】基本再生數(shù)R0與世代間隔T是新冠肺炎的流行病學(xué)基本參數(shù).基本再生數(shù)指一個感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:描述累計感染病例數(shù)I(t)隨時間t(單位:天)的變化規(guī)律,指數(shù)增長率r與R0,T近似滿足R0 =1+rT.有學(xué)者基于已有數(shù)據(jù)估計出R0=3.28,T=6.據(jù)此,在新冠肺炎疫情初始階段,累計感染病例數(shù)增加1倍需要的時間約為(ln2≈0.69) ( )
A.1.2天B.1.8天
C.2.5天D.3.5天
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①;②;③,這三個條件中任選一個,補充在下面問題中,然后解答補充完整的題目.
在△中,內(nèi)角A,B,C所對的邊分別為.且滿足_________.
(1)求;
(2)已知,△的外接圓半徑為,求△的邊AB上的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,為矩形,為等腰梯形,,,,且,平面平面,,分別為,的中點.
(Ⅰ)求證:平面;
(Ⅱ)若,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
Ⅰ若函數(shù)的最大值為3,求實數(shù)的值;
Ⅱ若當(dāng)時,恒成立,求實數(shù)的取值范圍;
Ⅲ若,是函數(shù)的兩個零點,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體中,為棱上的動點(點不與點,重合),過點作平面分別與棱,交于,兩點,若,則下列說法正確的是( )
A.面
B.存在點,使得∥平面
C.存在點,使得點到平面的距離為
D.用過,,三點的平面去截正方體,得到的截面一定是梯形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com