【題目】已知雙曲線 =1(a>0,b>0)的左焦點(diǎn)為F,離心率為 .若經(jīng)過(guò)F和P(0,4)兩點(diǎn)的直線平行于雙曲線的一條漸近線,則雙曲線的方程為( 。
A.
=1
B.
=1
C.
=1
D.
=1

【答案】B
【解析】解:設(shè)雙曲線的左焦點(diǎn)F(﹣c,0),離心率e= = ,c= a,
則雙曲線為等軸雙曲線,即a=b,
雙曲線的漸近線方程為y=± x=±x,
則經(jīng)過(guò)F和P(0,4)兩點(diǎn)的直線的斜率k= = ,
=1,c=4,則a=b=2 ,
∴雙曲線的標(biāo)準(zhǔn)方程: ;
故選B.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用斜率的計(jì)算公式,掌握給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,用兩點(diǎn)的坐標(biāo)來(lái)表示直線P1P2的斜率:斜率公式: k=y2-y1/x2-x1即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).

(1)若曲線y=f(x)在點(diǎn)(2,f(2))處與直線y=8相切,求a,b的值;

(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程.
極坐標(biāo)系與直角坐標(biāo)系xoy有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以x軸正半軸為極軸,已知曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的參數(shù)方程為 (t為參數(shù),0≤α<π),射線θ=φ,θ=φ+ ,θ=φ﹣ 與曲線C1交于(不包括極點(diǎn)O)三點(diǎn)A、B、C.
(1)求證:|OB|+|OC|= |OA|;
(2)當(dāng)φ= 時(shí),B,C兩點(diǎn)在曲線C2上,求m與α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知首項(xiàng)為﹣6的等差數(shù)列{an}的前7項(xiàng)和為0,等比數(shù)列{bn}滿足b3=a7 , |b3﹣b4|=6.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)是否存在正整數(shù)k,使得數(shù)列{ }的前k項(xiàng)和大于 ?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|3x﹣ |.
(1)求不等式f(x)<1的解集;
(2)若實(shí)數(shù)a,b,c滿足a>0,b>0,c>0且a+b+c= .求證: + +

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠A=60°,AB=3,AC=2.若 =2 (λ∈R),且 =﹣4,則λ的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐A-BCDE,底面BCDE是等腰梯形,BC DE, DCB=45°,OBC中點(diǎn),AO=,BC=6,AD=AE=2CD=.

(1)證明:AO⊥平面BCD;

(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD—A1B1C1D1中,若EA1C1中點(diǎn),則直線CE垂直于( )

A. AC B. BD C. A1D D. A1A

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD中,以D為原點(diǎn)建立空間直角坐標(biāo)系,E為B的中點(diǎn),F(xiàn)為的中點(diǎn),則下列向量中,能作為平面AEF的法向量的是( )

A. (1,-2,4) B. (-4,1,-2)

C. (2,-2,1) D. (1,2,-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案