把函數(shù)y=21-x+3的圖象向左移1個(gè)單位,向下移4個(gè)單位后,再關(guān)于x軸對(duì)稱,所得函數(shù)的解析式為
y=1-(
1
2
)x
y=1-(
1
2
)x
分析:圖象的變換體現(xiàn)在自變量和函數(shù)的變化,向左平移2個(gè)單位就是將x→x+1,向下移動(dòng)4個(gè)單位是將y→y+4,以此規(guī)律代入函數(shù)的解析式,用x變成x+1,y變成y+4,最后將y變成-y,從而得到答案.
解答:解:函數(shù)圖象左移1個(gè)單位,向下移動(dòng)4個(gè)單位
即以x+1代替x,y+4代替y,得到新的圖象對(duì)應(yīng)的函數(shù),
因此,把函數(shù)y=21-x+3的圖象向左移動(dòng)1個(gè)單位,向下移動(dòng)4個(gè)單位后,
用x變成x+1,y→y+4,得到y(tǒng)+4=21-(x+1)+3的圖象,即y=(
1
2
)x
-1,
再關(guān)于x軸對(duì)稱,所得函數(shù)的解析式為-y=(
1
2
)x
-1即:y=1-(
1
2
)x

故答案為:y=1-(
1
2
)x
點(diǎn)評(píng):本題主要考查了求指數(shù)函數(shù)解析式及圖象的變換,屬于基礎(chǔ)題.抓住函數(shù)圖象平移規(guī)律:“左加右減”等,是解決本題的關(guān)鍵點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二階矩陣M=(
a1
0b
)有特征值λ1=2及對(duì)應(yīng)的一個(gè)特征向量
e
1
=
1
1

(Ⅰ)求矩陣M;
(II)若
a
=
2
1
,求M10
a

(2)已知直線l:
x=1+
1
2
t
y=
3
2
t
(t為參數(shù)),曲線C1
x=cosθ
y=sinθ
  (θ為參數(shù)).
(Ⅰ)設(shè)l與C1相交于A,B兩點(diǎn),求|AB|;
(Ⅱ)若把曲線C1上各點(diǎn)的橫坐標(biāo)壓縮為原來的
1
2
倍,縱坐標(biāo)壓縮為原來的
3
2
倍,得到曲線C2C,設(shè)點(diǎn)P是曲線C2上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值.
(3)已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
(Ⅰ)當(dāng)m=5時(shí),求函數(shù)f(x)的定義域;
(Ⅱ)若關(guān)于x的不等式f(x)≥1的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

把函數(shù)y=21-x+3的圖象向左移1個(gè)單位,向下移4個(gè)單位后,再關(guān)于x軸對(duì)稱,所得函數(shù)的解析式為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

把函數(shù)y=21-x+3的圖象向左移1個(gè)單位,向下移4個(gè)單位后,再關(guān)于x軸對(duì)稱,所得函數(shù)的解析式為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省杭州市學(xué)軍中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

把函數(shù)y=21-x+3的圖象向左移1個(gè)單位,向下移4個(gè)單位后,再關(guān)于x軸對(duì)稱,所得函數(shù)的解析式為   

查看答案和解析>>

同步練習(xí)冊(cè)答案