(2012•鐵嶺模擬)點(diǎn)P是曲線y=x2-lnx上任意一點(diǎn),則點(diǎn)P到直線y=x+2的距離的最小值是
2
2
分析:求出平行于直線y=x+2且與曲線y=x2-lnx相切的切點(diǎn)坐標(biāo),再利用點(diǎn)到直線的距離公式可得結(jié)論.
解答:解:設(shè)P(x,y),則y′=2x-
1
x
(x>0)
令2x-
1
x
=1,則(x-1)(2x+1)=0,
∵x>0,∴x=1
∴y=1,即平行于直線y=x+2且與曲線y=x2-lnx相切的切點(diǎn)坐標(biāo)為(1,1)
由點(diǎn)到直線的距離公式可得d=
|1-1+2|
2
=
2

故答案為:
2
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查點(diǎn)到直線的距離公式,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺模擬)已知條件p:x>1,條件q:
1
x
≤1
,則p是q的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺模擬)設(shè)函數(shù)f(x)=x2,g(x)=alnx+bx(a>0).
(1)若f(1)=g(1),f′(1)=g′(1),求F(x)=f(x)-g(x)的極小值;
(2)在(1)的結(jié)論下,是否存在實(shí)常數(shù)k和m,使得f(x)≥kx+m和g(x)≤kx+m成立?若存在,求出k和m,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺模擬)設(shè)集合A={x|y=log2(x-2)},B={x|x2-5x+4<0},則A∪B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺模擬)已知函數(shù)f(x)=x|x-2|,若存在互不相等的實(shí)數(shù)a,b,c,使f(a)=f(b)=f(c) 成立,則a+b+c的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺模擬)在△ABC中,點(diǎn)M滿足
MA
+
MB
+
MC
=
0
,若 
AB
+
AC
+m
AM
=
0
,則實(shí)數(shù)m的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案