設(shè)函數(shù)對(duì)任意,都有,當(dāng)時(shí), 
(1)求證:是奇函數(shù);
(2)試問:在時(shí) ,是否有最大值?如果有,求出最大值,如果沒有,說明理由.
(3)解關(guān)于x的不等式
(1)詳見解析;(2)函數(shù)最大值為;(3)①,則解為;②,則解為;③,則無解.

試題分析:(1)要證明為奇函數(shù),需要證明.如何利用所給條件變出這樣一個(gè)等式來?
為了產(chǎn)生,令,則.這時(shí)的等于0嗎?如何求?再設(shè)可得,從而問題得證.
(2)一個(gè)連續(xù)函數(shù)在閉區(qū)間上必最大值的最小值.為了求函數(shù)的最值,就需要研究函數(shù)的單調(diào)性.研究單調(diào)性,第一,根據(jù)定義,第二利用導(dǎo)數(shù).抽象函數(shù)研究單調(diào)性只能用定義.任取,則,根據(jù)條件可得:
所以為減函數(shù),那么函數(shù)在上的最大值為.
(3)有關(guān)抽象函數(shù)的不等式,都是利用單調(diào)性去掉.首先要將不等式化為,注意必須是左右各一項(xiàng).在本題中,由題設(shè)可得在R上為減函數(shù)
,即.下面就解這個(gè)不等式.這個(gè)不等式中含有參數(shù),故需要分情況討論.
試題解析:(1)設(shè)可得,設(shè),則
所以為奇函數(shù).
(2)任取,則,又
所以
所以為減函數(shù)。
那么函數(shù)最大值為,,
所以函數(shù)最大值為.
(3)由題設(shè)可知

可化為
在R上為減函數(shù)
,即,
,則解為
,則解為
,則無解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)交于兩點(diǎn)且,奇函數(shù),當(dāng)時(shí),都在取到最小值.
(1)求的解析式;
(2)若圖象恰有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列函數(shù)中,既是偶函數(shù)又在區(qū)間上單調(diào)遞減的是__________.
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于x的函數(shù)y=log(a2-ax)在[0,+∞上為減函數(shù),則實(shí)數(shù)a的取值范圍是(  ).
A.(-∞,-1)B.(,0)C.(,0)D.(0,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某同學(xué)為了研究函數(shù)的性質(zhì),構(gòu)造了如圖所示的兩個(gè)邊長為的正方形,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),設(shè),則.那么可推知方程解的個(gè)數(shù)是(    )
A..B..C..D..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)偶函數(shù)的定義域?yàn)镽,當(dāng)時(shí)是增函數(shù),則的大小關(guān)系是..(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于函數(shù)和區(qū)間D,如果存在,使,則稱是函數(shù)在區(qū)間D上的“友好點(diǎn)”.現(xiàn)給出兩個(gè)函數(shù):
,;②;③,;④,,則在區(qū)間上的存在唯一“友好點(diǎn)”的是(  )
A.①②B.③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖象 (   )
A.關(guān)于原點(diǎn)對(duì)稱B.關(guān)于直線y=x對(duì)稱
C.關(guān)于x軸對(duì)稱D.關(guān)于y軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若扇形的半徑為R,所對(duì)圓心角為,扇形的周長為定值c,則這個(gè)扇形的最大面積為___.

查看答案和解析>>

同步練習(xí)冊(cè)答案