設(shè)函數(shù)f(x)對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)<0,f(1)=-2
(1)證明f(x)為奇函數(shù).
(2)證明f(x)在R上是減函數(shù).
(3)若f(2x+5)+f(6-7x)>4,求x的取值范圍.
(1)由于函數(shù)f(x)對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y),令x=y=0,可得f(0)=0.
再令y=-x,可得f(x-x)=f(x)+f(-x),即 0=f(x)+f(-x),化簡(jiǎn)可得f(-x)=-f(x),故函數(shù)f(x)為奇函數(shù).
(2)設(shè)x1<x2,則△=x2-x1>0,∵f(x+y)=f(x)+f(y),∴f( x2-x1 )=f(x2)-f(x1).
再由當(dāng)x>0時(shí),f(x)<0,可得 f( x2-x1 )<0,即-f(x1)+f(x2)<0,故有f(x1)>f(x2),
故f(x)在R上是減函數(shù).
(3)若f(2x+5)+f(6-7x)>4,則f(2x+5+6-7x)=f(11-5x)>4.
再由f(1)=-2,可得f( 11-5x)>f(-2),結(jié)合f(x)在R上是減函數(shù)可得 11-5x<-2,解得x>
13
5

故x的范圍為 (
13
5
,+∞).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知奇函數(shù)f(x)和偶函數(shù)g(x)的定義域都是(-∞,0)∪(0,+∞),且當(dāng)x<0時(shí),f’(x)g(x)+f(x)g’(x)>0.若g(-2)=0,則不等式f(x)g(x)>0的解集是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下面有四個(gè)結(jié)論:
①偶函數(shù)的圖象一定與y軸相交.
②奇函數(shù)的圖象不一定過原點(diǎn).
③偶函數(shù)若在(0,+∞)上是減函數(shù),則在(-∞,0)上一定是增函數(shù).
④有且只有一個(gè)函數(shù)既是奇函數(shù)又是偶函數(shù).
其中正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義在R上的偶函數(shù)y=f(x)在[0,+∞)上單調(diào)遞減,函數(shù)f(x)的一個(gè)零點(diǎn)為
1
2
,則不等式f(log4x)<0的解集是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)是R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,則f(2023)等于(  )
A.-4B.4C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=logax,(a>0且a≠1).
(1)若g(x)=f(|x|),當(dāng)a>1時(shí),解不等式g(1)<g(lgx);
(2)若函數(shù)h(x)=|f(x-a)|-1,討論h(x)在區(qū)間[2,4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=x+
4
x
,
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在(0,2]和[2,+∞)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)y=f(x)+x是偶函數(shù),且f(2)=1,則f(-2)=( 。
A.-1B.1C.-5D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義在R上的奇函數(shù)f(x)的圖象經(jīng)過點(diǎn)(2,2),且當(dāng)x∈(0,+∞)時(shí),f(x)=loga(x+2).
(1)求a的值;
(2)求函數(shù)f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案