【題目】如圖,直三棱柱中,,,,,點(diǎn)D,E分別為AB,的中點(diǎn).
(1)求證:平面平面;
(2)求異面直線與所成角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)只要證出,,根據(jù)面面平行的判定定理,即可得到平面平面;
(2)根據(jù)中位線平移法,連接交于O,即可得到即為異面直線與所成的角或其補(bǔ)角,再根據(jù)題意解三角形即可求出.
(1)∵D、E分別為AB、的中點(diǎn),
∴且
∴四邊形為平行四邊形
∴,又平面,平面
∴平面.
連接DE,
∵D、E分別為AB,的中點(diǎn),∴,且
又且,∴,且
∴四邊形為平行四邊形,
∴∵,平面,平面,
則有平面.
又,∴平面平面.
(2)連接交于O,易證且.
∴即為異面直線與所成的角或其補(bǔ)角.
在三角形ABC中,,,,
則為直角三角形,AB為斜邊,
即有,,,
在三角形CDO中,,
所以異面直線與所成角的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為3的菱形,∠ABC=60°.PA⊥面ABCD,且PA=3.F在棱PA上,且AF=1,E在棱PD上.
(Ⅰ)若CE∥面BDF,求PE:ED的值;
(Ⅱ)求二面角B-DF-A的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體AMDCNB是由兩個(gè)完全相同的四棱錐構(gòu)成的幾何體,這兩個(gè)四棱錐的底面ABCD為正方形,,平面平面ABCD.
(1)證明:平面平面MDC.
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某市高三數(shù)學(xué)復(fù)習(xí)備考情況,該市教研機(jī)構(gòu)組織了一次檢測(cè)考試,并隨機(jī)抽取了部分高三理科學(xué)生數(shù)學(xué)成績(jī)繪制如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)該市此次檢測(cè)理科數(shù)學(xué)的平均成績(jī);(精確到個(gè)位)
(2)研究發(fā)現(xiàn),本次檢測(cè)的理科數(shù)學(xué)成績(jī)近似服從正態(tài)分布(,約為),按以往的統(tǒng)計(jì)數(shù)據(jù),理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的同學(xué)約占.
(。估計(jì)本次檢測(cè)成績(jī)達(dá)到自主招生分?jǐn)?shù)要求的理科數(shù)學(xué)成績(jī)大約是多少分?(精確到個(gè)位)
(ⅱ)從該市高三理科學(xué)生中隨機(jī)抽取人,記理科數(shù)學(xué)成績(jī)能達(dá)到自主招生分?jǐn)?shù)要求的人數(shù)為,求的分布列及數(shù)學(xué)期望.(說(shuō)明:表示的概率.參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知傾斜角為的直線過(guò)點(diǎn)和點(diǎn),在第一象限,;
(1)求點(diǎn)的坐標(biāo);
(2)若直線與兩平行直線,相交于兩點(diǎn),且,求實(shí)數(shù)的值;
(3)對(duì)于平面上任一點(diǎn),當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),稱的最小值為與線段的距離,試求點(diǎn),到線段的距離關(guān)于的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),M是PC的中點(diǎn),在DM上取一點(diǎn)G,過(guò)G和AP的平面交平面BDM于GH,H在BD上.
(1)求證平面BDM.
(2)若G為DM中點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱臺(tái)中,底面是邊長(zhǎng)為的正三角形,,,是棱的中點(diǎn),點(diǎn)在棱上,且.
(1)求證:平面;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)證明:當(dāng)時(shí),函數(shù)有最大值.設(shè)的最大值為,求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com