【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點為極點,x軸非負半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)在平面直角坐標系xOy中,A(﹣2,0),B(0,﹣2),M是曲線C上任意一點,求△ABM面積的最小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右頂點分別是雙曲線:的左、右焦點,且與相交于點().
(1)求橢圓的標準方程;
(2)設直線:與橢圓交于A,B兩點,以線段AB為直徑的圓是否恒過定點?若恒過定點,求出該定點;若不恒過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農(nóng)場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關(guān)于當天需求量n(單位:枝,n∈N)的函數(shù)解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假設花店在這100天內(nèi)每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);
(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天的利潤不少于75元的概率.
(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系,.以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,點為上的動點,為的中點.
(1)請求出點軌跡的直角坐標方程;
(2)設點的極坐標為若直線經(jīng)過點且與曲線交于點,弦的中點為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,為坐標原點,過點的直線與交于、兩點.
(1)若直線與圓相切,求直線的方程;
(2)若直線與軸的交點為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校近幾年來通過“書香校園”主題系列活動,倡導學生整本閱讀紙質(zhì)課外書籍.下面的統(tǒng)計圖是該校2013年至2018年紙質(zhì)書人均閱讀量的情況,根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是( )
A.從2013年到2016年,該校紙質(zhì)書人均閱讀量逐年增長
B.2013年至2018年,該校紙質(zhì)書人均閱讀量的中位數(shù)是46.7本
C.2013年至2018年,該校紙質(zhì)書人均閱讀量的極差是45.3本
D.2013年至2018年,該校后三年紙質(zhì)書人均閱讀量總和是前三年紙質(zhì)書人均閱讀量總和的2倍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x2﹣2x+1的圖象與函數(shù)g(x)=3cosπx的圖象所有交點的橫坐標之和等于( )
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,右頂點,上頂點為B,左右焦點分別為,且,過點A作斜率為的直線l交橢圓于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)設P為的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com