已知a,b,c成等比數(shù)列,則函數(shù)y=2ax2+3bx+c與x軸交點(diǎn)的個(gè)數(shù)是
 
考點(diǎn):等比數(shù)列的通項(xiàng)公式,二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:根據(jù)a,b,c成等比數(shù)列,得出b2=ac>0,利用判別式△,判斷二次函數(shù)y與x軸交點(diǎn)的個(gè)數(shù).
解答: 解:∵a,b,c成等比數(shù)列,
∴b2=ac>0,
∴△=(3b)2-4•2a•c
=9b2-8ac
=b2+8(b2-ac)
=b2>0;
∴函數(shù)y=2ax2+3bx+c與x軸交點(diǎn)的個(gè)數(shù)是2.
故答案為:2.
點(diǎn)評(píng):本題考查了等比中項(xiàng)的應(yīng)用問題,也考查了二次函數(shù)的判別式的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,△ABC是正三角形,過底面一邊BC與側(cè)棱AA1上的一點(diǎn)所作的三棱柱的截面中,面積的最大值是2
3
,與底面所成二面角的最大值是
π
3
,則該三棱柱的體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1,側(cè)面BC1是邊長(zhǎng)為3的正方形,AA1到側(cè)面BC1的距離為2,E為側(cè)棱CC1上一點(diǎn),且C1E=1,則三棱錐E-A1B1C1的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x+a|+|x-3|當(dāng)a=-2時(shí),解不等式:f(x)≥4,若f(x)≤|x-5|的解集包括[2,3],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=4x2關(guān)于直線x-y=0對(duì)稱的拋物線的準(zhǔn)線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線x2=2py(p>0)上一點(diǎn)M到焦點(diǎn)的距離為1,若點(diǎn)M的縱坐標(biāo)為
15
16
,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在矩形ABCD中,AB=3
5
,AD=6,BD是對(duì)角線,過A作AE⊥BD,垂足為O,交CD于E,以AE為折痕將△ADE向上折起,使點(diǎn)D到點(diǎn)P的位置.
(1)若平面PAE與平面ABCE所形成的二面角P-AE-B的大小為60°,求四棱錐P-ABCE的體積;
(2)若PB=
41
,求二面角P-AB-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
滿足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),則
a
b
方向上的投影為 ( 。
A、-
3
3
2
B、
3
3
2
C、-3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1+a2+…+an=n2
(1)在數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
an
2n
)
的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案