已知數(shù)列的前項(xiàng)和,數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式,并說(shuō)明是否為等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和.

(1)數(shù)列的通項(xiàng)公式為不是等比數(shù)列;
(2)數(shù)列的前項(xiàng)和.

解析試題分析:(1)已知,用即可求出數(shù)列的通項(xiàng)公式,由公式易知不是等比數(shù)列;(2)先求出數(shù)列的通項(xiàng)公式,用錯(cuò)位相減法求出前項(xiàng)和.
(1),,兩式相減得
 ,故不是等比數(shù)列.
(2)
由錯(cuò)位相減得.
考點(diǎn):數(shù)列通項(xiàng)公式的求法、數(shù)列求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

個(gè)正數(shù)排成列:


 
 

其中每一行的數(shù)由左至右成等差數(shù)列,每一列的數(shù)由上至下成等比數(shù)列,并且所有公比相等,已知,,,則=           。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,,
(1)設(shè).證明:數(shù)列是等差數(shù)列;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)各項(xiàng)為正數(shù)的數(shù)列的前和為,且滿足:.等比數(shù)列滿足:.
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)的和
(Ⅲ)證明:對(duì)一切正整數(shù),有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等比數(shù)列中,已知
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和
(2)記,求的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:數(shù)列{an}的前n項(xiàng)和Sn=n2+2n(n∈N*)
(1)求:通項(xiàng)
(2)求和: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知n∈N*,數(shù)列{dn}滿足dn,數(shù)列{an}滿足and1d2d3+…+d2n.又知數(shù)列{bn}中,b1=2,且對(duì)任意正整數(shù)mn,.
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)將數(shù)列{bn}中的第a1項(xiàng),第a2項(xiàng),第a3項(xiàng),…,第an項(xiàng)刪去后,剩余的項(xiàng)按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}的前2013項(xiàng)和T2013.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的首項(xiàng)為,公差為,且不等式的解集為
(I)求數(shù)列的通項(xiàng)公式;
(II)若,求數(shù)列項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

遞減等差數(shù)列{an}的前n項(xiàng)和Sn滿足S5S10,則欲使Sn最大,則n=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案