【題目】已知雙曲線C和橢圓有公共的焦點(diǎn),且離心率為.
(1)求雙曲線C的方程.
(2)經(jīng)過點(diǎn)M(2,1)作直線l交雙曲線C于A,B兩點(diǎn),且M為AB的中點(diǎn),求直線l的方程并求弦長.
【答案】(1)x21 (2)y=4x﹣7,弦長
【解析】
(1)求出雙曲線的焦點(diǎn)坐標(biāo),結(jié)合離心率,聯(lián)立求解a,b,c得到雙曲線的方程;
(2)設(shè)A(x1,y1),B(x2,y2)代入橢圓方程,用點(diǎn)差法求出直線斜率,弦長公式求弦長即可.
(1)由題意得橢圓的焦點(diǎn)為F1(,0),F2(,0),
設(shè)雙曲線方程為1,a>0,b>0,
則c2=a2+b2=3,
∵e
∴ca,
解得a2=1,b2=2,
∴雙曲線方程為x21.
(2)把A(x1,y1),B(x2,y2)分別代入雙曲線x12y12=1,x22y22=1,
兩式相減,得(x1﹣x2)(x1+x2)(y1﹣y2)(y1+y2)=0,
把x1+x2=4,y1+y2=2代入,得4(x1﹣x2)﹣(y1﹣y2)=0,
∴kAB4,
∴直線L的方程為y=4x﹣7,
把y=4x﹣7代入x21,
消去y得14x2﹣56x+51=0,
∴x1+x2=4,x1x2= ,k=4,
∴|AB|.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;
(Ⅱ)設(shè)函數(shù)的導(dǎo)函數(shù)是,若不等式對于任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個極值點(diǎn),,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線,曲線.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求的直角坐標(biāo)方程;
(2)與交于不同的四點(diǎn),這四點(diǎn)在上排列順次為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[0,],求函數(shù)f(x)的最值及相應(yīng)x的取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB,BP=BC=2,E,F分別是PB,PC的中點(diǎn).
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)求三棱錐E—ABC的體積V.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。
(Ⅰ)求k的值及f(x)的表達(dá)式。
(Ⅱ)隔熱層修建多厚時,總費(fèi)用f(x)達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi)對甲產(chǎn)品進(jìn)行促銷宣傳,在一年內(nèi)預(yù)計銷量(萬件)與廣告費(fèi)(萬元)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為萬元,每生產(chǎn)1萬件此產(chǎn)品仍需要再投入30萬元,且能全部銷售完,若每件甲產(chǎn)品銷售價格(元)定為:“平均每件甲產(chǎn)品生產(chǎn)成本的150%”與“年平均每件產(chǎn)品所占廣告費(fèi)的50%”之和,則當(dāng)廣告費(fèi)為1萬元時,該企業(yè)甲產(chǎn)品的年利潤比不投入廣告費(fèi)時的年利潤增加了__________萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為D,若存在非零實(shí)數(shù)l使得對于任意x∈M(MD),有x+l∈D,且f(x+l)f(x),則稱f(x)為M上的l高調(diào)函數(shù).現(xiàn)給出下列命題:①函數(shù)f(x)=2﹣x為R上的1高調(diào)函數(shù);②函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);③如果定義域為[﹣1,+∞)的函數(shù)f(x)=x2為[﹣1,+∞)上m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);④函數(shù)f(x)=lg(|x﹣2|+1)為[1,+∞)上的2高調(diào)函數(shù).其中真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù),若不等式的解集為(1,4),且方程f(x)=x有兩個相等的實(shí)數(shù)根。
(1)求f(x)的解析式;
(2)若不等式f(x)>mx在上恒成立,求實(shí)數(shù)m的取值范圍;
(3)解不等式
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com