已知x,y滿足x=
3-(y-2)2
,則
y+1
x+
3
的取值范圍是( 。
A.[
3
3
,+∞)
B.[0,
3
3
]
C.[0,
3
+1]
D.[
3
3
3
+1]
∵x,y滿足x=
3-(y-2)2

故(x,y)點落在半圓x2+(y-2)2=3,(x≥0)
y+1
x+
3
表示半圓上動點(x,y)與(-
3
,-1)點連線的斜率,
如圖所示:
由圖可知當直線與半圓相切時,
y+1
x+
3
=
3
3

當當直線與半圓相交于(0,2+
3
)時,
y+1
x+
3
=
3
+1
y+1
x+
3
的取值范圍是[
3
3
,
3
+1]

故選D
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:x2+y2+2x-4y+3=0
(1)若圓的切線在x,y軸上的截距的絕對值相等,求此切線方程;
(2)從圓外一點P(x1,y1)向圓引一條切線,切點M,O為坐標原點,且有|PM|=|PO|,求使|PM|最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:x2+y2=4與直線l:y=kx+3交于P、Q兩點,且|PQ|=2
3
,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

把直線y=
3
3
x
繞原點逆時針方向旋轉,使它與圓x2+y2+2
3
x-2y+3=0
相切,則直線旋轉的最小正角是( 。
A.
π
3
B.
π
2
C.
3
D.
6

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如直線ax+by=R2與圓x2+y2=R2相交,則點(a,b)與此圓的位置關系是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果直線ax+by=2與圓x2+y2=4相切,那么a+b的最大值為( 。
A.1B.
2
2
C.2D.
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓C:(x-1)2+(y-2)2=25及直線l:(2m+1)x+(m+1)y=7m+4.(m∈R)
(1)證明:不論m取什么實數(shù),直線l與圓C恒相交;
(2)求直線l與圓C所截得的弦長的最短長度及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線y=2px2(p>0)的準線與圓x2+y2-4y-5=0相切,則p的值為(  )
A.10B.6C.
1
8
D.
1
24

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:以點C(t,
2
t
)(t∈R,t≠0)
為圓心的圓與x軸交于點O,A,與y軸交于點O、B,其中O為原點,
(1)求證:△OAB的面積為定值;
(2)設直線y=-2x+4與圓C交于點M,N,若OM=ON,求圓C的方程.

查看答案和解析>>

同步練習冊答案