設函數(shù)f(x)在定義域內可導,y=f(x)的圖象如圖所示,則導函數(shù)y=f′(x)可能為( 。
A、
B、
C、
D、
考點:函數(shù)的圖象,導數(shù)的運算
專題:函數(shù)的性質及應用
分析:先從f(x)的圖象判斷出f(x)的單調性,根據(jù)函數(shù)的單調性與導函數(shù)的符號的關系判斷出導函數(shù)的符號,判斷出導函數(shù)的圖象
解答: 解:由f(x)的圖象判斷出
f(x)在區(qū)間(-∞,0)上遞增;在(0,+∞)上先增再減再增
∴在區(qū)間(-∞,0)上f′(x)>0,在(0,+∞)上先有f′(x)>0再有f′(x)<0再有f′(x)>0
故選D.
點評:本題主要考查函數(shù)的單調性與其導函數(shù)的正負之間的關系,即當導函數(shù)大于0時原函數(shù)單調遞增,當導函數(shù)小于0時原函數(shù)單調遞減,屬于基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

計算:cos
3
+sin
2
tan
13π
4
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中:
①函數(shù)f(x)=lg(x2+mx+m)的值域為R,則m∈(0,4);
②若函數(shù)f(x)滿足f(x+1)=
1+f(x)
1-f(x)
,則f(x)為周期函數(shù);
③函數(shù)y=f(2-x)與y=f(2+x)的圖象關于直線x=2對稱;
④若函數(shù)f(x)=x+log2(x+
x2+1
)
,則“m+n≥0”是“f(m)+f(n)≥0”的充要條件.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖的多面體中,EF⊥平面AEB,AE⊥EB,AD∥EF∥BC,BC=2AD=4,AE=BE=2,G是BC的中點.
(1)求證:AB∥平面DEG;
(2)求直線BD與平面BCFE所成角的正切值;
(3)求證:BD⊥EG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用誘導公式求下列三角函數(shù)值.
(1)cos(-
17π
4
);
(2)sin(-2160°52′);
(3)cos1615°8′.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
OA
=3i-4j,
OB
=6i-3j,
OC
=(5-m)i-(3+m)j,其中i,j分別是平面直角坐標系內x軸與y軸正方向上的單位向量.
(1)若點A,B,C能構成三角形,求實數(shù)m應滿足的條件;
(2)對任意m∈[1,2],不等式
AC
2≤-x2+x+3恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是定點,l為定直線,點F到l的距離為p(p>0),點M在直線l上移動,動點N在MF的延長線上,且滿足|FN|•|MF|=|MN|,求動點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點A(-1,-3),則斜率是直線y=3x的斜率的-
1
4
的直線方程
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-
1+cos2x
2
-
1
2
,若x∈[
π
4
,
π
2
],求函數(shù)f(x)的最值及對應x的值.

查看答案和解析>>

同步練習冊答案