【題目】某市有一特色酒店由一些完全相同的帳篷構成.每座帳篷的體積為立方米,且分上下兩層,其中上層是半徑為(單位:米)的半球體,下層是半徑為米,高為米的圓柱體(如圖).經測算,上層半球體部分每平方米建造費用為2千元,下方圓柱體的側面、隔層和地面三個部分平均每平方米建造費用為3千元,設每座帳篷的建造費用為千元.
參考公式:球的體積,球的表面積,其中為球的半徑.
(1)求關于的函數解析式,并指出該函數的定義域;
(2)當半徑為何值時,每座帳篷的建造費用最小,并求出最小值.
科目:高中數學 來源: 題型:
【題目】已知曲線(為參數),曲線,將的橫坐標伸長為原來的2倍,縱坐標縮短為原來的得到曲線.
(1)求曲線的普通方程,曲線的直角坐標方程;
(2)若點為曲線上的任意一點,為曲線上的任意一點,求線段的最小值,并求此時的的坐標;
(3)過(2)中求出的點做一直線,交曲線于兩點,求面積的最大值(為直角坐標系的坐標原點),并求出此時直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列各一元二次不等式中,解集為空集的是( 。
A.(x+3)(x﹣1)>0B.(x+4)(x﹣1)<0
C.x2﹣2x+3<0D.2x2﹣3x﹣2>0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司準備將萬元資金投入到市環(huán)保工程建設中,現有甲、乙兩個建設項目選擇,若投資甲項目一年后可獲得的利潤(萬元)的概率分布列如表所示:
且的期望;若投資乙項目一年后可獲得的利潤(萬元)與該項目建設材料的成本有關,在生產的過程中,公司將根據成本情況決定是否在第二和第三季度進行產品的價格調整,兩次調整相互獨立且調整的概率分別為和.若乙項目產品價格一年內調整的次數(次數)與的關系如表所示:
(Ⅰ)求的值;
(Ⅱ)求的分布列;
(Ⅲ)若該公司投資乙項目一年后能獲得較多的利潤,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B,C,D為平面內的四點,且A(1,3),B(2,–2),C(4,1).
(1)若,求D點的坐標;
(2)設向量,,若k–與+3平行,求實數 的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com