已知函數(shù)f(x)=lnx-
1
2
ax2+bx
(a>0),且f′(1)=0.
(Ⅰ)試用含有a的式子表示b,并求f(x)的極值;
(Ⅱ)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2),如果在函數(shù)圖象上存在點M(x0,y0)(其中x0∈(x1,x2)),使得點M處的切線lAB,則稱AB存在“伴隨切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱AB存在“中值伴隨切線”.試問:在函數(shù)f(x)的圖象上是否存在兩點A、B使得它存在“中值伴隨切線”,若存在,求出A、B的坐標(biāo),若不存在,說明理由.
(Ⅰ)f(x)的定義域為(0,+∞),∵f′(x)=
1
x
-ax+b
,f'(1)=1-a+b=0,∴b=a-1.
代入f′(x)=
1
x
-ax+b
,得f′(x)=
1
x
-ax
+a-1=-
(ax+1)(x-1)
x

當(dāng)f'(x)>0時,-
(ax+1)(x-1)
x
>0
,由x>0,得(ax+1)(x-1)<0,
又a>0,∴0<x<1,即f(x)在(0,1)上單調(diào)遞增;
當(dāng)f'(x)<0時,-
(ax+1)(x-1)
x
<0
,由x>0,得(ax+1)(x-1)>0,
又a>0,∴x>1,即f(x)在(1,+∞)上單調(diào)遞減.
∴f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.
所以,當(dāng)x=1時,f(x)的極大值為f(1)=ln1-
1
2
a+b=
a
2
-1

(Ⅱ)在函數(shù)f(x)的圖象上不存在兩點A、B使得它存在“中值伴隨切線”.
假設(shè)存在兩點A(x1,y1),B(x2,y2),不妨設(shè)0<x1<x2,則y1=lnx1-
1
2
a
x21
+(a-1)x1
,y2=lnx2-
1
2
a
x22
+(a-1)x2
,kAB=
y2-y1
x2-x1
=
(lnx2-lnx1)-
1
2
a(
x22
-
x21
)+(a-1)(x2-x1)
x2-x1
=
lnx2-lnx1
x2-x1
-
1
2
a(x1+x2)+a-1
,
在函數(shù)圖象x0=
x1+x2
2
處的切線斜率k=f′(x0)=f′(
x1+x2
2
)=
2
x1+x2
-a•
x1+x2
2
+(a-1)
,
lnx2-lnx1
x2-x1
-
1
2
a(x1+x2)+a-1
=
2
x1+x2
-a•
x1+x2
2
+(a-1)

化簡得:
lnx2-lnx1
x2-x1
=
2
x1+x2
,ln
x2
x1
=
2(x2-x1)
x2+x1
=
2(
x2
x1
-1)
x2
x1
+1

x2
x1
=t
,則t>1,上式化為:lnt=
2(t-1)
t+1
=2-
4
t+1
,即lnt+
4
t+1
=2
,
若令g(t)=lnt+
4
t+1
g′(t)=
1
t
-
4
(t+1)2
=
(t-1)2
t(t+1)2

由t≥1,g'(t)≥0,∴g(t)在[1,+∞)在上單調(diào)遞增,g(t)>g(1)=2.
這表明在(1,+∞)內(nèi)不存在t,使得lnt+
4
t+1
=2.
綜上所述,在函數(shù)f(x)上不存在兩點A、B使得它存在“中值伴隨切線”.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若f(x)=x3+3ax2+3(a+2)x+1有三個單調(diào)區(qū)間,則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N+).
(1)請寫出fn(x)的表達(dá)式(不需證明);
(2)求fn(x)的極小值;
(3)設(shè)gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值為a,fn(x)的最小值為b,求a-b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x-2lnx
(Ⅰ)求函數(shù)在(1,f(1))的切線方程;
(Ⅱ)求函數(shù)f(x)的極值;
(Ⅲ)對于曲線上的不同兩點P1(x1,y1),P2(x2,y2),如果存在曲線上的點Q(x0,y0),且x1<x0<x2,使得曲線在點Q處的切線lP1P2,則稱l為弦P1P2的陪伴切線.已知兩點A(1,f(1)),B(e,f(e)),試求弦AB的陪伴切線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)a為實數(shù),函數(shù)f(x)=x3+ax2+(a-2)x的導(dǎo)函數(shù)是f′(x)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為( 。
A.y=-3xB.y=-2xC.y=3xD.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1處有極值0,則a+b=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2-2x+c在x=-2時有極大值6,在x=1時有極小值,
(1)求a,b,c的值;
(2)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線y=ax3+bx-1在點(1,f(1))處的切線方程為y=x,則a+b=( 。
A.-3B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3-ax2+(a2-1)x+b(a,b∈R).
(Ⅰ)若x=1為f(x)的極值點,求a的值;
(Ⅱ)若y=f(x)的圖象在點(1,f(1))處的切線方程為x+y-3=0,求f(x)在區(qū)間[-2,4]上的最大值;
(Ⅲ)當(dāng)a≠0時,若f(x)在區(qū)間(-1,1)上不單調(diào),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案