如圖所示,寫出終邊落在圖中陰影部分(不包括邊界)的∠α的集合,并指出2α,
α
2
分別是第幾象限的角.
考點(diǎn):象限角、軸線角
專題:三角函數(shù)的求值
分析:利用已知條件表示出角的范圍,然后求解2α,
α
2
分別是第幾象限的角.
解答: 解:由題意可知:k360°+135°≤α≤k360°+150°,k∈Z,
k720°+270°≤2α≤k720°+300°,k∈Z,是第四象限角.
k180°+67.5°≤
α
2
≤k180°+75°,k∈Z,是第一、三象限的角.
點(diǎn)評(píng):本題考查角的范圍的求法,象限角的判斷,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某廠生產(chǎn)A,B兩型會(huì)議桌,每套會(huì)議桌需經(jīng)過加工木材和上油漆兩道工序才能完成.已知做一套A,B型會(huì)議桌需要加工木材的時(shí)間分別為1小時(shí)和2小時(shí),上油漆需要的時(shí)間分別為3小時(shí)和1小時(shí).廠里規(guī)定:加工木材的時(shí)間每天不得超過8小時(shí),上油漆的時(shí)間每天不得超過9小時(shí).已知該廠生產(chǎn)一套A,B型會(huì)議桌分別可獲得利潤(rùn)2千元和3千元,試問:該廠每天應(yīng)分別生產(chǎn)A,B兩型會(huì)議桌多少套,才能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,Sn為其前n項(xiàng)和,已知a1=1,a2=5,an+2=an+1-an(n∈N*),則S2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=lg(
x
10
)•lg(100x),x∈[
1
10
,10],用換元法求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直二面角D-AB-E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(Ⅰ)求證:AE⊥平面BCE;
(Ⅱ)求點(diǎn)D到平面ACE的距離;
(Ⅲ)求二面角E-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M的極坐標(biāo)為(2,
π
4
)
,則該點(diǎn)的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,命題p:對(duì)任意x∈[0,8],不等式log
1
3
(x+1)≥m2
-3m恒成立;命題q:存在x∈(0,
3
)
,使不等式2sin2x+2sinxcosx≤
2
m(sinx+cosx)成立.
(1)若p為真命題,求m的取值范圍;
(2)若p∧q為假,p∨q為真,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
9
=1
的實(shí)軸長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案