已知函數(shù)。
(1)當(dāng)時,求曲線處切線的斜率;
(2)求的單調(diào)區(qū)間;
(3)當(dāng)時,求在區(qū)間上的最小值。

(1);(2)當(dāng)時,的單調(diào)遞減區(qū)間為;當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。(3);  

解析試題分析:(1)把代入函數(shù)解析式中,求出函數(shù)的導(dǎo)數(shù),把代入導(dǎo)函數(shù)中去即得切線的斜率;(2)求出導(dǎo)函數(shù),導(dǎo)函數(shù)中含有參數(shù),要對進(jìn)行討論,然后令導(dǎo)函數(shù)大于0得增區(qū)間,令導(dǎo)函數(shù)小于0得減區(qū)間;(3)利用(2)中求得的單調(diào)區(qū)間來求函數(shù)的最值即可,但要對在范圍內(nèi)進(jìn)行討論;
試題解析:解:(1)當(dāng)時,,      2分
故曲線處切線的斜率為。      4分
(2)。         6分
①當(dāng)時,由于,故
所以,的單調(diào)遞減區(qū)間為。         8分
②當(dāng)時,由,得。
在區(qū)間上,,在區(qū)間上,。
所以,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。   10分
綜上,當(dāng)時,的單調(diào)遞減區(qū)間為;當(dāng)時,函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為。         11分
(3)根據(jù)(2)得到的結(jié)論,當(dāng),即時,在區(qū)間上的最小值為,。      13分
當(dāng),即時,在區(qū)間上的最小值為。
綜上,當(dāng)時,在區(qū)間上的最小值為,當(dāng)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,
(1)當(dāng)時,求函數(shù)的最小值;
(2)若函數(shù)的最小值為,令,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的最小值是,在一個周期內(nèi)圖象最高點與最低點橫坐標(biāo)差是,又:圖象過點,
求(1)函數(shù)解析式,
(2)函數(shù)的最大值、以及達(dá)到最大值時的集合;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性;
(3)當(dāng)時,函數(shù),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是定義在上的奇函數(shù),且,若時,有
(1)證明上是增函數(shù);
(2)解不等式
(3)若恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的奇函數(shù),當(dāng)時,
(1)求函數(shù)上的解析式;(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)g(x)=+1,h(x)=,x∈(-3,a],其中a為常數(shù)且a>0,令函數(shù)f(x)=g(x)·h(x).
(1)求函數(shù)f(x)的表達(dá)式,并求其定義域;
(2)當(dāng)a=時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù)上單調(diào)遞減,則的取值范圍為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),若當(dāng)x∈(0,+∞)時,f(x)=lg x,則滿足f(x)>0
x的取值范圍是                .

查看答案和解析>>

同步練習(xí)冊答案