如圖,在△ABC中,∠C=90°,BC=8,AB=10,O為BC上一點(diǎn),以O(shè)為圓心,OB為半徑作半圓與BC邊、AB邊分別交于點(diǎn)D、E,連接DE。

(1)若BD=6,求線段DE的長(zhǎng);

(2)過點(diǎn)E作半圓O的切線,交AC于點(diǎn)F,

     證明:AF=EF。

 

【答案】

(Ⅰ)DE=.  (Ⅱ)見解析

【解析】本試題主要是考查了平面幾何中圓的性質(zhì)和三角形相似的綜合運(yùn)用。利用

(1)因?yàn)锽D=6,利用相似比線段DE的長(zhǎng);

(2)過點(diǎn)E作半圓O的切線,交AC于點(diǎn)F,結(jié)合弦切線定理,表示出角的關(guān)系,以及三角形的形狀,進(jìn)而得證。

解:(Ⅰ)∵BD是直徑,∴∠DEB=90º,∴,∵BD=6,∴BE=

在Rt△BDE中,DE=.           …5分

(Ⅱ)連結(jié)OE,

∵EF為切線,∴∠OEF=90º,∴∠AEF+∠OEB=90º,又∵∠C=90º,∴∠A+∠B=90º,又∵OE=OB,∴∠OEB=∠B,∴∠AEF=∠A,∴AF=EF.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長(zhǎng);
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
,
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大。
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案