【題目】將一個內(nèi)角為且邊長為的菱形沿著較短的對角線折成一個二面角為的空間四邊形,則此空間四邊形的外接球的半徑為

A. B. C. D.

【答案】D

【解析】分析: 首先把平面圖形轉(zhuǎn)換為空間圖形,進一步利用球的中心和勾股定理的應用求出結(jié)果.

詳解: 如圖所示:

菱形ABCD的A=60°,沿BC折疊,得到上圖,

則E、F分別是ABC和BCD的中心,

球心O為ABC和BCD的過中心的垂線的交點,

則:OE=OF=1,EC=2,

利用勾股定理得:

故答案為:D

點睛: (1)本題主要考查空間幾何體的外接球問題,考查二面角,意在考查學生對這些基礎(chǔ)知識的掌握能力及空間想象能力. (2)解答本題的關(guān)鍵是找到球心,由于E、F分別是ABC和BCD的中心,所以球心O為ABC和△BCD的過中心的垂線的交點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】運貨卡車以每小時x千米的速度勻速行駛130千米,按交通法規(guī)限制50≤x≤100(單位:千米/).假設(shè)汽油的價格是每升2元,而汽車每小時耗油升,司機的工資是每小時14.

(1)求這次行車總費用y關(guān)于x的表達式;

(2)x為何值時,這次行車的總費用最低,并求出最低費用的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入萬元,甲、乙兩種商品分別可獲得萬元的利潤,利潤曲線,,如圖所示.

(1)求函數(shù)的解析式;

(2)應怎樣分配投資資金,才能使投資獲得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】紅星海水養(yǎng)殖場進行某水產(chǎn)品的新舊養(yǎng)殖方法的產(chǎn)量對比,收貨時在舊養(yǎng)殖的大量網(wǎng)箱中隨機抽取 個網(wǎng)箱,在新養(yǎng)殖法養(yǎng)殖的大量網(wǎng)箱中也隨機抽取個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量,得樣本頻率分布直方圖如下:

(1)填寫下列列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān).

養(yǎng)殖法 箱產(chǎn)量

箱產(chǎn)量

箱產(chǎn)量

總計

舊養(yǎng)殖法

新養(yǎng)殖法

總計

(2)設(shè)兩種養(yǎng)殖方法的產(chǎn)量互相獨立,記表示事件:“舊養(yǎng)殖法的箱產(chǎn)量低于,新養(yǎng)殖法的箱產(chǎn)量不低于 ”,估計的概率;

(3)某水產(chǎn)批發(fā)戶從紅星海水養(yǎng)殖場用新養(yǎng)殖法養(yǎng)殖的大量網(wǎng)箱水產(chǎn)品中購買了個網(wǎng)箱的水產(chǎn)品,記表示箱產(chǎn)量位于區(qū)間的網(wǎng)箱個數(shù),以上樣本在相應區(qū)間的頻率代替概率,求 .

附:

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x.

(1)判斷函數(shù)的奇偶性,并證明;

(2)用單調(diào)性的定義證明函數(shù)f(x)=2x在(0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,命題:對,不等式恒成立;命題,使得成立.

(1)若為真命題,求的取值范圍;

(2)當時,若假,為真,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果一個三位數(shù)的各位數(shù)字互不相同,且各數(shù)字之和等于10,則稱此三位數(shù)為“十全十美三位數(shù)”(如235),任取一個“十全十美三位數(shù)”,該數(shù)為奇數(shù)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面四個命題中,其中正確命題的序號為____________.

① 函數(shù)是周期為的偶函數(shù);

② 若 是第一象限的角,且,則 ;

是函數(shù)的一條對稱軸方程;

④ 在內(nèi)方程有3個解

查看答案和解析>>

同步練習冊答案