已知點(diǎn)A(-1,1),B(1,2),C(-2,-1),D(3,4),求向量
AB
CD
方向上的投影.
考點(diǎn):平面向量數(shù)量積的含義與物理意義
專題:平面向量及應(yīng)用
分析:由點(diǎn)A、B、C、D的坐標(biāo),求出向量
AB
、
CD
,再求向量
AB
CD
方向上的投影.
解答: 解:∵點(diǎn)A(-1,1),B(1,2),C(-2,-1),D(3,4),
∴向量
AB
=(1+1,2-1)=(2,1),
CD
=(3+2,4+1)=(5,5);
∴向量
AB
CD
方向上的投影是
AB
CD
|
CD
|
=
2×5+1×5
52+52
=
3
2
2
點(diǎn)評:本題考查了平面向量的應(yīng)用問題,解題時(shí)應(yīng)熟練地掌握向量的坐標(biāo)表示以及向量的投影的求法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線mx2+y2=1的虛軸長是實(shí)軸長的
3
倍,則m等于( 。
A、
1
3
B、3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(ax+2)(e為自然對數(shù)的底數(shù),a∈R為常數(shù)).對于函數(shù)g(x),h(x),若存在常數(shù)k,b,對于任意x∈R,不等式g(x)≤kx+b≤h(x)都成立,則稱直線y=kx+b是函數(shù)g(x),h(x)的分界線.
(Ⅰ)若a=-1,求f(x)的極值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)設(shè)a=2,試探究函數(shù)g(x)=-x2+4x+2與函數(shù)f(x)是否存在“分界線”?若存在,求出分界線方程;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O:x2+y2=4與坐標(biāo)軸交于點(diǎn)A,B,C.
(1)求與直線AC垂直的圓的切線方程;
(2)設(shè)點(diǎn)M是圓上任意一點(diǎn)(不在坐標(biāo)軸上),直線CM交x軸于點(diǎn)D,直線BM交直線AC于點(diǎn)N,
①若D點(diǎn)坐標(biāo)為(2
3
,0),求弦CM的長;
②求證:2kND-kMB為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在常數(shù)a,b,c,使得等式1(n2-12)+2(n2-22)+…+n(n2-n2)=an4+bn2+c對一切正整數(shù)n都成立?若存在,求出a,b,c的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,AB=2AD,BD=
3
AD,PD⊥平面ABCD,點(diǎn)M為PC的中點(diǎn).
(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+b-a(a,b∈R).
(1)若關(guān)于x的不等式f(x)>0的解集為(-∞,-1)∪(3,+∞),求實(shí)數(shù)a,b的值;
(2)設(shè)a=2,若不等式f(x)>b2-3b對任意實(shí)數(shù)x都成立,求實(shí)數(shù)b的取值范圍;
(3)設(shè)b=3,解關(guān)于x的不等式組
f(x)>0
x>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)氣象部門預(yù)報(bào),在距離碼頭A南偏東45°方向400千米B處的臺風(fēng)中心正以20千米每小時(shí)的速度向北偏東15°方向沿直線移動(dòng),以臺風(fēng)中心為圓心,距臺風(fēng)中心100
13
千米以內(nèi)的地區(qū)都將受到臺風(fēng)影響.據(jù)以上預(yù)報(bào)估計(jì),從現(xiàn)在起多長時(shí)間后,碼頭A將受到臺風(fēng)的影響?影響時(shí)間大約有多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

棱長為2的正方體的對角線長為
 

查看答案和解析>>

同步練習(xí)冊答案