已知直線AB與CD是異面直線,求證:直線AC與BD也是異面直線.
考點(diǎn):異面直線的判定
專題:空間位置關(guān)系與距離
分析:根據(jù)題目特征,利用反證法證明;只要否定結(jié)論,推出矛盾即可.
解答: 證明:假設(shè)直線AC、BD是共面直線,
則A,B,C,D四點(diǎn)在同一平面上,
所以直線AB、CD是兩條直線共面,
與已知AB、CD是兩條異面直線矛盾,所以假設(shè)錯(cuò)誤;
故直線AC、BD一定是異面直線.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是異面直線的判定,利用用反證法證明數(shù)學(xué)命題,把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的否定,是解題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=70.3,b=0.37,c=log70.3,則a,b,c的大小關(guān)系是( 。
A、b<c<a
B、c<b<a
C、c<a<b
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=log
1
2
3,b=(
1
3
)0.3
,c=lnπ,則( 。
A、c<a<b
B、a<c<b
C、a<b<c
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)h(x)與函數(shù)f1(x),f2(x)的定義域均相同.如果存在實(shí)數(shù)m,n使得h(x)=m•f1(x)+n•f2(x),那么稱h(x)為函數(shù)f1(x),f2(x)的生成函數(shù),其中m,n稱為生成系數(shù).
(1)h(x)是f(x)=x2+x,g(x)=x+2在R上生成的二次函數(shù),若h(x)為偶函數(shù),求h(
2
);
(2)已知h(x)是f1(x)=x(x>0),f2(x)=
1
x
(x>0)的生成函數(shù),兩個(gè)生成系數(shù)均為正數(shù),且函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8);
i)求h(x)的解析式
ii)已知正實(shí)數(shù)x1,x2滿足x1+x2=1,.問(wèn)是否存在最大的常數(shù)m,使不等式h(x1)h(x2)≥m對(duì)滿足條件的任意x1,x2恒成立?如果存在,求出這個(gè)m的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

垂直于錐軸的平面去截圓錐,得到的是圓;把平面漸漸傾斜,得到橢圓;當(dāng)平面和圓錐的一條母線平行時(shí),得到拋物線;當(dāng)平面再傾斜一些就可以得到雙曲線,求畫圖詳解得到雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

園林公司種植的樹(shù)的成活率為90%,該公司種植的10棵樹(shù)中有8棵或8棵以上將成活的概率是多少?從平均的角度來(lái)看,該公司種植的10棵樹(shù)將有多少成活?(用隨機(jī)變量及其分布解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
1
2
≤2x≤4,求函數(shù)f(x)=3+2×3x+1-9x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x2+2x+a-1在區(qū)間(-∞,
1
2
]上的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(cos77°,sin77°),
b
=(cos32°,sin32°),則
a
+
b
的模長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案